濃度計量証明書 証明書番号 第 \$120039 号 受 付 番 号 第 12211500-A 号 発行年月日 平成24年9月18日 東京都中央卸売市場 新市場 整備部 様 株式会社日立プラ 本社 〒170-603 東京都豊島区東 分析技術センタ 千葉県松戸 電話 FAX 047-367-6921 計量証明事業登録番号 千葉県知事登録 第503 計量管理者名 環境計量士 下記試料に対する計量の結果を次のとおり証明致します。 1. 件 名 豊洲新市場予定地における盛土の土壌調査委託(その1) 2. 採取年月日 平成24年8月15日~8月25日 3. 採取場所 東京都江東区豊洲六丁目地内 4. 採取者 ボーリング掘削(土壌コア採取):清水建設株式会社 土壌試料分取及び運搬 : 株式会社日立プラントサービス 5. 計量の対象 土壌(溶出量および含有量) 6. 検液調整方法 溶出量:「土壌の汚染に係る環境基準について(平成3年8月環告第46号)付表」 含有量:「土壤汚染対策法施行規則(平成15年3月環告第19号)付表」 #### 7. 分析機関 | 分析 | 斤機関名称 | ㈱日立プラントサービス | ㈱湘南分析センター | 習和産業㈱ | |-----|-----------------|---------------------|-----------|----------------| | | ≹証明事業
≹番号 | 千葉県 第 503 号 | 神奈川県 第3号 | 千葉県 第 540 号 | | | 第1種特定 | 全11項目 | 全11項目 | 全11項目 | | 担 | 有害物質 第2種特定 | (検液の作成含む)
全9項目 | (検液の作成含む) | (検液の作成含む) | | 当 項 | 第 4 性付足
有害物質 | 全9項日
 (検液の作成含む) | | | | | 第3種特定 | 全5項目 | | 有機りん化合物溶出量(※1) | | | 有害物質 | (検液の作成含む) | | 竹塚り心に古物俗田里(※1) | ※1:検液の作成は、㈱日立プラントサービスにて実施。 8. 計量方法 別紙、計量結果一覧表 S120039-A (2/2) のとおり | 分析機関名称 | 分析機関及び計量方法の区分 | |-------------|---------------| | ㈱日立プラントサービス | 1及び2 | | ㈱湘南分析センター | 3 | | 習和産業㈱ | 4 | 9. 計量の結果 別紙、計量結果一覧表 S120039-A (1/2~2/2) のとおり 10. **そ の** 他 別紙、計量結果一覧表において『N.D.』とは、定量下限値未満であることを表す。 ## 計量結果一覧表 件名: 豊洲新市場予定地における盛土の土壌調査委託(その1) 発行日: 平 発行証明書番号: S⁻ 株式会社 日立プラントサー 本社: 〒170-6034 東京都豊 分 析 技 術 センタ 住所: 〒271-0064 千葉県お 計量証明事業登録番号 千葉県知事登録 第503号 計量管理者 環境計量士 | _ | | 9 | | 7.E. S. HU | (201 | , | | | | - | | | | | 壌溶 | 出量 | _ | | | | | | | | | | | | | | | 惊 全 ‡ | · # | | | | |----------------------------------|-----------|--|----------------|----------------|-----------------|----------------|----------|----------------|-------------|----------|--------------------|--------------|----------|-----------------|-----------|------------|--------|--------------|---------------|---------------|--------|-------------|----------|----------------|--------|-----------|--------|----------|-------------------|------------|---------|----------------|----------|-------------|------------|-------------| | 試料点名 | 2 | 採取日業 | 四塩化 | 1,2-シ クロ | | | 1,3-シ'クロ | | テトラクロ | 1,1,1-19 | 1,1,2-トリ
クロロエタン | トリクロロ | رالدرايد | が'沙」及び
その化合物 | 六価クロム | シアン
化合物 | 水銀及び | セレン及び | F. 的及び | 砒素及び
その化合物 | ふっ素及び | ほう素及び | | チオベン | | 式U塩化 | 有機りん | カドミカル形でド | お併かせん | 1777 | | 坡合有 | | 71-38-TL-77 | t _3612.ve | 127-4111-55 | | | | ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 灰猴
(mg/L) | ロエタン
(mg/L) | ロエチレン
(mg/L) | 1 | 07 0 ~ 4 | t | ł | | | | | 1 | | 1 | その化合物 | その化合物 | か その化合物 | その化合物 | その化合物 | その化合物 | シマジン | カルブ | チウラム | ピフェニル | 化合物 | その化合物 | 化合物 | シアン
化合物 | その化合物 | セレン及び
その化合物 | その化合物 | その化合物 | その化合物 | その化合物 | | A 7 - 9 (深度0- | - 0.05 m) | 8/15/ 1 | | N.D. | N.D. | (mg/L)
N.D. | (mg/L) | (mg/L)
N.D. | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | | (mg/L) (mg/kg) | A 7 - 9 (深度0- | | | | - | | N.D. - N.D. | - N.D. | | - | | - | | <u>-</u> | <u> </u> | - | | | | - | _ | | - | | | | | | A 7 - 9 (深度 | 0.5 m) | | N.D. 0.005 | 0.006 | 0.3 | 0.1 | N.D. 15 | N.D. | N.D. | N.D. | | A 7 - 9 (深度 | | 8/15 1 | N.D. 0.005 | 0.002 | 0.4 | 0.1 | - N.D. | - ND | - N.D. | -
N.D. | - | -,- | - | - | - | | - | | <u> </u> | | | A 7 - 9 (深度 | 2 m) | 8/15 1 | N.D. 0.003 | | 0.4 | 0.1
N.D. | N.D. | N.D.
N.D. | N.D. | A 7 - 9 (深度 | 3 m) | 8/15 1 | N.D. 0.004 | | 0.3 | N.D. 15 | N.D. | N.D. | N.D. | | A 7 - 9 (深度 | 3.08 m) | 8/15 1 | N.D. 0.004 | | 0.3 | N.D. N.D.
N.D. | 17
16 | N.D. | N.D. | N.D. | | A 10 - 1 (深度0- | | 8/25 1 | N.D. | - | _ | - | - | - | - | - | - | - | | - | | - 1 | | | N.D. | K.D. | 1V.D. | _ 16 | N.D. | N.D. | N.D. | | A 10 - 1 (深度0- | | 8/25 1 | | - | - | | | _ | _ | | - | _ | _ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.2 | N.D. | A 10 - 1 (深度 | | 8/25 1 | | N.D. _ | | _ | - | _ | _ | - | _ ` | | _ | | - | | - | | - | - | - | - | - | | - N.D. | | | A 10 - 1 (深度 | | 8/25 1 | N.D. 0.007 | 0.2 | N.D. 20 | N.D. | N.D. | N.D. | | A 10 - 2 (深度0- | | | N.D. | | _ | | _ | _ | - | | _ | | - | _ | _ | | - | _ | | - | | | | - | | | A 10 - 2 (深度0- | | 8/25 1 | - | - | - | | | | - | - | | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.2 | N.D. 47 | N.D. | N.D. | N.D. | | A 10 - 2 (深度
A 10 - 2 (深度 | | 8/25 1 | | N.D. | _ | | | - | <u> </u> | | | | | _ | - | _ | | | | - | - | - | - | - | - | | | A 10 - 2 (森度) | | 8/25 1 | N.D. | N.D. | N.D.
N.D. | N.D. 0.007 | 0.3 | 0.1 | N.D. 24 | N.D. | N.D. | N.D. | | A 10 - 3 (深度0- | | | N.D. | - | | | - | _ | - | | | | | - | | | | | _ | | | | | _ | | | | 0.5 m) | | N.D. - N.D. | 0.003 | 0.3 | 0.1 | N.D. 18 | N.D. | N.D. | N.D. | | A 10 - 3 (深度 | | 8/25 1 | N.D. N D | N D | - N. D. | - | 0.000 | | | - | | - | | | | - | | | | | | | | | A 11 - 2 (深度0- | | 8/21 3 | N.D. 0.003 | 0.3 | 0.1 | N.D. | N.D. | N.D. | N.D. | _N.D | N.D. | N.D. | N.D. | N.D. | N.D. | 16 | N.D. | N.D. | N.D. | | A 11 - 2 (深度0- | | 8/21 1 | _ | | _ | · _ | | | - | - | | | - N.D. | 0.2 | N.D. | N.D. | - N.D. | | - I | | - | - | - | | - | | | | | | A 11 - 2 (深度0- | 0.5 m) | 8/21 4 | - | | | | | | | | | | | | - | | - N.D. | N.D. | N.D. | | - 0.2 | | N.D. 21 | N.D. | N.D. | N.D. | | A 11 - 2 (深度 | 0.5 m) | 8/21 3 | N.D. | _ | _ | - | | _ | | | | | - | | | - N.D. | | | | | | | | | | | A 11 - 2 (深度 | 1 m) | 8/21 1 | | _ | - | | | _ | - 1 | - | - | - | _ | N.D. 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | 22 | N.D. | -
N.D. |
N.D. | | A 11 - 2 (深度 | 1 m) | 8/21 3 | N.D. - | - | - | _ | _ | _ | - | - | | - | | - | - | | | - K.D. | | - N.D. | - IV.D. | | | - N.D. | N.D. | | A 11 - 2 (深度 | | 8/21 4 | | | - | | | | | - | - | - 1 | | _ | | - | | | | - | - | | | | _ | _ | N.D. | | | | | _ | | | | | | A 11 - 2 (深度 | | 8/21 1 | - | | | | | - | | | | | | N.D. 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | - 1 | N.D. | N.D. | N.D. | N.D. | N.D. | 17 | N.D. | N.D. | N.D. | | A 11 - 2 (深度 | | 8/21 3 | N.D. | | | | _ | | | | _ | | - | - | - | - | | - 1 | | _ | - | - | | - | | | A 11 - 2 (深度
A 11 - 2 (深度 | | 8/21 4 | - | | | | | | | - | | - | | | | _ | - | | - | - | - | - | - | | | - | N.D. | | - ' | _ | - | - | - 1 | | | | | A 11 - 2 (深度
A 11 - 2 (深度 | 3 m) | 8/21 1
8/21 3 | | N.D. | N D | - N.D. | | - | - | - | | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | N.D. | N.D. | | A 11 - 2 (深度 | | 3/21 3
8/21 4 | N.D. | | | | | | | | | | - | | | | | | - | | | | | <u> </u> | | | | / | 3/21 1 | - l | | | | | | <u>-</u> | | | - | _ | - I | | - N.D. | - | <u> </u> | | | | | | | | | N.D. | | <u>-</u> . | | | | | - |] | _ | | | 3.90 m) 8 | | N.D. 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | | | 3/21 4 | _ | - | | - | - | - | | | - IV.D. | N.D. | - N.D. | | | | | | | ·- <u>-</u> | | | | | | | | - | | - 1 | | - | | | | | | A 11 - 3 (深度0- (| 0.05 m) 8 | 3/20 4 | N.D. | | | _ | | | | | | | - - | | | N.D. | | | | | - | | | | | | A 11 - 3 (深度0- | 0.5 m) 8 | 3/20 1 | | - | | - | - 1 | - 1 | - | | - | | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.1 | N.D. - N.D. | - I | N.D. | 177 | - | | | | | 0.5 m) 8 | | N.D. - | - | | - | | | - | - | | - | | - T.D. | - IX.D. | -1 | - N.D. | - N.D. | N.D. | N.D. | N.D. | 17 | N.D. | N.D. | N.D. | | A 11 - 3 (深度 | 1 m) 8 | | <u>- T</u> | - | | _ | | | | | | | | N.D. 0.2 | N.D. | N.D. | N.D. | N.D. | 18 | N D | ND . | | | | 1 m) 8 | | N.D. | i | | | - | | - | | _ | - | | | | _ | | | | | | - 18 | N.D. | N.D. | N.D. | | | 2 m) 8 | | - | - | | | | | | -] | | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.2 | N.D. 16 | N.D. | N.D. | N.D. | | | 2 m) 8 | | N.D. | N.D. | N.D. | | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | - | <u> </u> | -] | | - | | - | | _ | | | _ | _ | - | - 1 | - | _ | - | _ | = | _ | - | | | | 3 m) 8 | | - N.D. | - | <u>-</u> | <u>-</u> | | | | | | - | - | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.3 | N.D. 30 | N.D. | N.D. | N.D. | | A 11 - 3 (深度
A 11 - 3 (深度 3 | 3 m) 8 | /20 4 | N.D. | N.D. | א.ט. | N.D. | N.D. | N.D. | | N.D. | N.D. | | N.D. | | | - | - | | | - | | - | | | | | | | - | | | | | | | | | A 11 - 3 (深度 3
A 11 - 3 (深度 3 | | | N D | N D | N.D | N.D. | N D | - N.D. | -
N.D. | - | -
N.D. | - N.D. | - | | N.D. | | | N.D. | N.D. | 0.003 | | | | N.D. 25 | N.D. | N.D. | N.D. | | A 12 - 1 (茶度 0- 0 | 0.51 H) 0 | /20 4 | ND. | | | | | | | | | | N.D. | | - | _=_ | - | | | | - | _ | | - | | | | | | | - | - | - | | | | | A 12 - 1 (深度0- 0 | | | _ | | | - IN.D. | N.D. | Ν.D. | N.D. | N.D. | N.D. | N.D. | N.D. | - | - N.D | - I | - I | - | | - | - | - | <u>-</u> | | | · - | | - | - | | | | - | - | | | | A 12 - 1 (深度 (| | | N.D. | N.D. 0.2 | N.D. | N.D. | N.D. | | N.D. 17 | N.D. | N.D. | N.D. | | | 1 m) 8 | | - | - | | _ | _ | _ | - | | - | | | N.D. | N.D. | N D | N.D. | N.D. | N.D. | N.D. | - | N D | N D | N.D. | - | - N.D. | - | - | - | - | - | - | - | | <u>-</u> - | | | A 12 - 1 (深度 | 1 m) 8 | /20 4 | N.D. | - | | - | | - I | | 0.3 | N.D. 15 | N.D. | N.D. | N.D. | | A 12 - 1 (深度 | 2 m) 8 | /20 1 | - | - | | - | | _ | | - | _ | _ | | N.D. 0.2 | N.D. | N.D. | N.D. | N.D | N.D. | ND - | N.D. | N.D. | N.D. | N.D. | N.D. | 19 | - + | N.D. | - N.D | | | 2 m) 8 | | | N.D. † | - | | - | | _ | _ | - | - TV.D. | | - I | - K.D. | _ | | _ | - N.D. | | - IV.D. | | 18 | N.D. | N.D. | <u>к.р.</u> | | | 3 m) 8 | | | | - | | | _ | | | | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.4 | N.D. | N.D. | | | N.D. | N.D. | N.D. | | N.D. | | N.D. | 20 | N.D. | N.D. | N.D. | | | 3 m) 8 | | | N.D. | _ | - | - | | _ | | - | - | - | _ | _ | - | | _ | _ | - | - | | _ | - | - | - | -1.0. | | A 12 - 1 (深度 3. | | | | - | - | | | | [| - | | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.2 | N.D. 16 | N.D. | N.D. | N.D. | | A 12 - 1 (深度 3. | s.98 m) 8 | /20 4 | N.D. | N.D | N.D. 1 | N.D. | N.D. | | | - [| | - 1 | | | - | | - | | - 1 | _ | | _ | | - |
| · - | | - | - | | # <u>計量結果一覧表</u> 件名: 豊洲新市場予定地における盛土の土壌調査委託(その1) 発行日: 平 発行証明書番号: S: 株式会社 日立プラントサート 本社: 〒170-6034 東京都豊 分析技術センタ 住所: 〒271-0064 千葉県松, ルニルルのの 計量証明事業登録番号 千葉県知事登録 第503号 計量管 | 正例 字: | 未互味田巧 | 丁米乐以手登3037 | |-------|-------|------------| | 實理者 | 環境計量士 | | | | | 粉料 | | r | | | | | · | | | | | 土 | 壌 溶 | 出量 | | | | | | | | | | | | 1 | | | <u></u> | 壤含 7 | 有量 | | | | |--|--------------|-------|--------------|--------------------|-------------------|---------------------|----------------|--|---------------|------------------------|----------------------|----------------|---------------|-----------------------|-------------------------|-----------------------|----------------|---------------|---------------|----------|----------------|---------------|----------------|----------------|----------------|----------------------|----------------|---------------|----------------|---------------|-----------------------|-----------------------|---|---------------|-----------------|---------------| | 試料点名 | 探取 | 日本 | 四塩化
炭素 | 1,2-シケ | ロ 1,1-ジク
ロエチレン | ロ シス1,2-5
クロロエチレ | | | プトラク1
ロエチレ | 1 1,1,1-トリ
ン クロロエタン | 1,I,2-トリ
クロロエタン | トリクロロ | | か、ウム及び
その化合 | び 六価クロ 化合物 | | 水銀及び | セレン及び | び一鈴及び | 砒素及び | よっ素及び
その化合物 | ほう素及び | シマジン | チオペン | チウラム | | | | 六価クロム | シアン | 水銀及び | セレン及び | ア 給及び | 砒素及び | ふっ楽及び | ドほう素及び | | |] | ชั | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L |) (mg/L) | , | 1 | (mg/L) | (mg/L) | (mg/L) | | | | (mg/L) | 1 | 1 | i | | ļ | 1 | カルブ
(mg/L) | 1 | ピフェニル
(mg/L) | 化合物
(mg/L) | その化合物 | | | | | あ その化合物 | 1 | | | | A 13 - 4 (深度0- 0.05 m | | | N.D. - | - | - | - | | - | | - | - | - (mg/ L) | (iig/ ii/ | (IIIg/L) | - (mg/L/ | (IIIg/L) | (mg/ kg/ | (mg/ kg) | (mg/kg) |) (mg/kg)
— | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | A 13 - 4 (深度0- 0.5 m | | | - | ļ. <u>-</u> | | <u> </u> | _ | | | _ | _ | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.2 | N.D. | A 13 - 4 (深度 0.5 m
A 13 - 4 (深度 1 m | | | N.D. | N.D. | N.D. | N.D. | | | N.D. | N.D. | N.D. | N.D. | N.D. | - | | _ | _ | _ | - | | - | | - | | - | - | _ | - | - | - | - | - | - | - | - | | | A 13 - 4 (深度 1 m
A 13 - 4 (深度 2 m | | | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. 0.003 | 0.2 | N.D. | A 13 - 4 (深度 3 m | - | | N.D. 0.002 | 0.3 | N.D. 17 | N.D. | N.D. | N.D. | | A 13 - 4 (深度 3.83 m | | _ | N.D. 0.3 | N.D. | A 13 - 5 (深度0- 0.05 m | | | N.D. | N.D. | N.D. | | + | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | - K.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.3 | N.D. 16 | N.D. | N.D. | N.D. | | A 13 - 5 (深度0- 0.5 m | 8/25 | 1 | _ | _ | | | T- | 1- | - | - | - | - | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. |
N.D. | - N.D. | - N.D. | - N.D. | <u>-</u> | - | - | <u> </u> | | A 13 - 5 (深度 0.5 m | | | N.D. - | - | - | - | | - | - | - | | - | N.D. | | - N.D. | | . к.р. | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | N.D. | N.D. | | | 8/25 | | N.D. 0.002 | 0.4 | N.D. 16 | N.D. | N.D. | N.D. | | A 13 - 6 (深度0- 0.05 m
A 13 - 6 (深度0- 0.5 m | | | N.D. | _ | | | _ | | - | | - | | - | | _ | | | - | | -, | - | - | | - N.D. | - N.D. | | A 13 - 6 (深度 0.5 m) | 8/25 | - | N.D. | NI D | N.D | | - | | <u> </u> | - | | | · - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. 15 | N.D. | N.D. | N.D. | | | 8/25 | J H | N.D. - | - | - | - | | <u> </u> | | _ | | | | _ | | | - | _ | | | - | | - | _ | - | | A 13 - 7 (深度0- 0.05 m) | | | N.D. 0.002 | 0.3 | N.D. 18 | N.D. | N.D. | N.D. | | 45 | 8/20 | +i | - | | | - IN.D. | IV.D. | - IV.D. | N.D. | N.D. | איחי | N.D. | N.D. | N.D. | N.D. | N D | - N.D | | 1 - | -
 - | - | - | - | <u> </u> | | | | | | | <u> </u> | <u> </u> | <u> - </u> | | | | | A 13 - 7 (深度 0.5 m) | 1 | 1 | N.D. 0.002 | N.D. | 0.2 | N.D. | A 13 - 7 (深度 1 m) | 8/20 | 1 | N.D. 0.3 | N.D. | N.D. | N.D. | N.D. | - N.D. | | | | - | | - | - | | | | | A 13 - 7 (深度 2 m) | 8/20 | 1 | N.D. 0.3 | N.D. N.D.
N.D. | N.D. | N.D. | 17 | N.D. | N.D. | N.D. | | A 13 - 7 (深度 3 m) | | 1 | N.D. 0.002 | 0.4 | N.D. 120
20 | N.D. | N.D. | N.D. | | A 13 - 7 (深度 3.73 m) | | 1 | N.D. 0.002 | 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | 17 | N.D. | N.D. | N.D. | | A 13 - 8 (深度0- 0.05 m) | | 1 | N.D. _ | | - | - | - | - | - | - | - | - | - | - | - | - | - | - | | | | - | - 1 | _ N.D. | N.D. | | A 13 - 8 (深度0- 0.5 m) | | 1 | - | | | | <u> </u> | - | | | | | | N.D. 0.2 | N.D. 15 | N.D. | N.D. | N.D. | | A 13 - 8 (深度 0.5 m)
A 13 - 8 (深度 1 m) | 8/20 | 1 | N.D. <u> </u> | | | - | | | | _ | | _ | | _ | | - | _ | | _ | | _ | | - | | | | A 13 - 8 (深度 2 m) | 8/20 | —— | N.D. | 0.002 | 0.3 | N.D. 18 | N.D. | N.D. | N.D. | | | 8/20 | ———— | N.D. . N.D.
N.D. | N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | | | N.D. | N.D. | N.D. | N.D. | N.D. | 19 | N.D. | N.D. | N.D. | | A 13 - 8 (深度 3.72 m) | _ | —II- | N.D. 0.003 | 0.3 | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 20 | N.D. | N.D. | N.D. | | A 13 - 9 (深度0- 0.05 m) | _ | | N.D. | N.D. 0.002 | 0.1 | N.D. 25 | N.D. | N.D. | N.D. | | A 13 - 9 (深度0- 0.5 m) | 8/20 | 1 | - | _ | | _ | _ | - | _ | - | - | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.005 | N.D. | N.D. |
N.D. | N.D. | - N.D. | ND. | - N.D | | - | | - | - <u>;-</u> | - - | - | | | | A 13 - 9 (深度 0.5 m) | 8/20 | 4 | N.D. - | | - | | - N.D. | | - | | N.D. · N.D. | N.D. | N.D. | N.D. | N.D. | | | 8/20 | 1 | | _ | | | - | _ | | _ | - | | _ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.004 | 0.3 | N.D. 16 | N.D. | - I | | | | 8/20 | 4 | N.D. _ | | | _ | _ | _ | - | - | - | | - | - | - | - | | - I | - N.D. | N.D. | - N.D. | 10 | N.D. | N.D. | N.D. | | | 8/20 | 1 | | | | | _ | _ | | | - | | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. - 15 | N.D. | N.D. | N.D. | | | 8/20
8/20 | 4 | N.D. _ | | _ | - | | _ | | | | | _ | | | _] | | _ | - | _ | | | | | | | | 8/20 | 4 | N.D. | N.D. | N.D. | N D | N D | - N | | - | - | - | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.3 | N.D. 21 | N.D. | N.D. | N.D. | | A 13 - 9 (深度 3.95 m) | | 1 | _ | ,,, _D , | N.D. -
N.D. | | - | | | | | | - | | | - | | | | - | | _ | | | | _ = _ | | | A 13 - 9 (深度 3.95 m) | | 4 | N.D. | N.D. | N.D. | N.D. | | N.D. | | N D | | N.D. 0.003 | 0.4 | N.D. 17 | N.D. | N.D. | N.D. | | 定量下限值 | Ĭ | | | 0.0004 | | 0.004 | | | 0.001 | | | | 0.001 | 0.002 | 0.01 | 0.1 | 0.0005 | 0.002 | 0.002 | 0.002 | 0.1 | 0.1 | 0.0003 | 0.000 | 0.0006 | - 0005 | | - | - / | - | | | - | | - [| | | 指定基準種 | | | 0.002 | 0.004 | 0.02 | 0.04 | 0.002 | 0.02 | 0.01 | 1 | | 0.03 | 0.01 | 0.01 | | 象出されないこと | | 0.002 | 0.002 | 0.002 | 0.1 | 1 1 | 0.0003 | 0.002 | | 0.0005
!#&れないこと # | 0.1 | 15
150 | 25
250 | 5
50 | 1.5 | 15
150 | 15
150 | 15
150 | 400 | 400 | | 桝日立プラントサービス | | , [| JIS K | JIS K
0125 | JIS K
0125 | JIS K
0125 | JIS K
0125 | JIS K | | | JIS K | 昭和46年 | | JIS K | | | JIS K | | | | | | | | | 昭和46年 | | | | 4000 | 4000 | | 計量方法 その1 | - 1 | 1 | 0125
5.2 JIS K
0102
55.4 | JIS K
0102
65.2.1 | JIS K
0102
38.3 | 環告59号 | JIS K
0102 | 0102 | 0102 | 昭和46年
泰告59号 | 0102 | 森告59号 | 環告59号 | 昭和46年 日 環告59号 | 装告59号 # | 蒙告64号 | 0102 | 0102
65.2.1 | 0102 | 操告59号 | JIS K
0102
67.2 | JIS K
0102 | JIS K
0102 | JIS K
0102 | JIS K
0102 | | 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 | | | IIS K | JIS K | | | - | | | | | 付表1 | 67.4 | 54.4 | 61.4 | 付表6 | | | | 付表4 | | — | | 65.2.1 | 38.3 | 付表1 | | 54.3 | 61.2 | 34.1 | 47.3 | | | ļ | 2 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | JIS K
0125 | JIS K
0125
5.1 | JIS K
0125 | JIS K
0125 | JIS K
0102 | JIS K
0102 | 0102 | 昭和46年
環告59号 | JIS K
0102 | JIS K
0102 | | 昭和46年
環告59号 | JIS K
0102 | 昭和46年
環告59号 | 昭和46年 | 昭和46年
環告59号 | 昭和46年 馬爾告50年 # | 召和49年
5号64年 | JIS K
0102 | JIS K
0102 | JIS K
0102 | 昭和46年
森告59号
付表1 | JIS K
0102 | JIS K
0102 | JIS K
0102 | JIS K | JIS K | | | | | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5. I | 55.4 | 65.2.1 | | 付表1 | 67.4 | 54.4 | 61.4 | 付表6 | 47.3 | 付表5第1 | 付表5第1 | 付表4 | 付表3 | 付表1 | 55.3 | 65.2.1 | 38.3 | 付表1 | 67.2 | 54.3 | 61.2 | 0102
34.1 | 0102
47.3 | | (料湖南分析センター
************************************ | | 3 | IS K
0125 | JIS K | JIS K
0125 | JIS K | JIS K | | _ | | | Ţ | 7 | T | | | | | | | | | | [| , | | | | | | | 計量方法
 | [| | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 0125
5,2 | 5.2 | 0125
5.2 | 0125
5.2 | | i | | | | | · | | | | | | | | | | [| , | | | | | | | 置和產業㈱ | | | IS K | JIS | | | | | | | | | | | | -
 | | \dashv | | | | | | | -{- | | | 計量方法 | | 4 ' |)125
5.2 | 0125
5.2 | 0125
5.2 | 0125
5.2 | 0125
5.2 | JIS K
0125
5.2 | 0125
5.2 | JIS K
0125
5.2 | 0125 | 0125
5.2 | 0125
5.2 | | | <u> </u> | |] | | | —] | | | | | —— s | 告64号 | | | | , —— I | | | | | | | _ | | U | | | | | | V-4 | V | <u></u> | V.L | V.4 | 5.2 | | | | [| | | | | | | [| | | 付表1 | | | | . | | 1 | | - 1 | | # 農 度 計 量 証 明 書 証明書番号 第 S120040 号 受 付 番 号 第 12211500-B 号 発行年月日 平成24年9月18日 東京都中央卸売市場 新市場整備部様 株式会社日立プラ 本社 〒170-603 東京都豊島区東 分析技術センタ 千葉県松戸 電話 FAX 047-367-6921 計量証明事業登録番号 千葉県知事登録 第503 計量管理者名 環境計量士 下記試料に対する計量の結果を次のとおり証明致します。 1. 件 名 豊洲新市場予定地における盛土の土壌調査委託(その1) 2. 採取年月日 平成24年8月15日~8月16日 3. 採取場所 東京都江東区豊洲六丁目地内 4. 採 取 者 ボーリング掘削(土壌コア採取): 清 水 建 設 株 式 会 社 土壌試料分取及び運搬 : 株式会社日立プラントサービス 5. 計量の対象 土壌(溶出量および含有量) 6. 検液調整方法 溶出量:「土壌の汚染に係る環境基準について(平成3年8月環告第46号)付表」 含有量:「土壤汚染対策法施行規則(平成15年3月環告第19号)付表」 7.
分析機関 | 分析 | 斤機関名称 | ㈱日立プラントサービス | |-----|--------------|-------------| | | ≹証明事業
≹番号 | 千葉県 第 503 号 | | | 第1種特定 | 全11項目 | | 担 | 有害物質 | (検液の作成含む) | | 当 | 第2種特定 | 全9項目 | | 当項目 | 有害物質 | (検液の作成含む) | | | 第3種特定 | 全5項目 | | | 有害物質 | (検液の作成含む) | 8. 計 量 方 法 別紙、計量結果一覧表 S120040-B (1/1) のとおり | 分析機関名称 | 分析機関及び計量方法の区分 | |-------------|---------------| | ㈱日立プラントサービス | 1及び2 | 9. 計量の結果 別紙、計量結果一覧表 S120040-B (1/1) のとおり 10. **そ の** 他 別紙、計量結果一覧表において『N.D.』とは、定量下限値未満であることを 表す。 ## 計量結果一覧表 発行日: 平 発行証明書番号: ST 株式会社 日立プラントサート 本社: 〒170-6034 東京都豊 分析技術 センタ 住所: 〒271-0064 千葉県格 計量証明事業登録番号 千葉県知事登録 第503号 | 件名: 豊洲新市場予定地 | における盛: | 上の土壌調 | 查委託 | (その1 |) | | | | | | | | | | | | • | | | | | | | | | | | | |----------------------|-----------|----------------|----------------|--------|--------------------|---------|--------|------------|--------------------|--------------------|---------------|--------|------------------|--------------|------------|---------------|----------------|--------------|---------------|----------------|----------------|------|-------------|------|---------------|-------------|----------------|-------| | | 分析 | 即长少 | 1.0-2/200 | T | | I | | | | | | , | | 壌 溶 出 | | • | | | | | | | | | - | | | | | . 試料点名 | 探取日間 | ★ | // | 1/ | プス1,2-ジ
クロロエチレン | 1,3-シクロ | メタン | アトラクロロエチレン | 1,1,1-トラ
クロロエタン | 1,1,2-トリ
クロロエタン | トリクロロ
エチレン | ベンゼン | かり シン及び
その化合物 | 六価クロム
化合物 | シアン
化合物 | 水銀及び
その化合物 | セレン及び
その化合物 | 鉛及び
その化合物 | 砒素及び
その化合物 | ふっ素及び
その化合物 | ほう素及び
その化合物 | シマジン | チオペン
カルブ | チウラム | ポリ塩化
ピフェニル | 有機りん
化合物 | がうな及び
その化合物 | 六価クロム | | B 7 - 3 (深度0- 0.05) | n) 8/15 1 | (mg/L)
N.D. | (mg/L)
N.D. | (mg/L) | | | (mg/L) | | | | | - 1 | 試料点名 | # # # # # # # # # # # # # # # # # # # | 四塩化 | 1.2-770 | 1 1-2/20 | シス1,2-ジ | 1 2-3/2 | ジクロロ | テトラクロ | | 1 | T | 1 | | 400 /15 | <u> </u> | T | 1 | · · | ¬ | | | | | | | , | | | • | <u> </u> | 堪 含 有 | 有量 | | | - 1 | |----------|---------------------------------|--|--------------|-------------|-------------|----------------|-------------|-------------|-------------|------------------------|-----------------|---------------|--------|------------------|----------|---------------|----------------|---------------|---------------|-------------|----------------|--------------------|--------------------|---------|------------------------|--------------|--------------------|---------------|---------------|---------|----------------|---------------|---------------|------------------|---------------|---------------| | | ・純朴泉石 | 探取日 | 炭素 | ロエクン | ロエチレン | | リフロヘン | | | 2 1,1,1-ドリ
ン クロロエタン | 1,1,2-トリ クロロエタン | トリクロロ | ベンゼン | , からひみて
その化合物 | 大価クロノ | シアン化合物 | 水銀及び | セレン及び | が | 砒素及び | ふっ素及し | ド ほう素及び
り その化合物 | シマジン | チオペン | チウラム | ポリ塩化 | | からかるひ | 六価クロム | | 水銀及び | セレン及び | 鉛及び | 砒素及び | | ほう茶及び | | <u> </u> | | ช | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | | 1 | (mg/L) | 1 . | | 1 | 1 | 1 | カルブ | | ピフェニル | 化合物 | その化合物 | 化合物 | 化合物 | 1 | J | 1 | その化合物 | 1 | 1 11 | | B 7 | - 3 (深度0- 0.05 m |) 8/15 1 | N.D. | Ń.D. | N.D. \g/ L/ | (mg/ L) | (lig/L) | (iiig/L/ | (mg/L) (mg/kg) | | - 3 (深度0- 0.5 m | | - | _ | T - | - | - | | | - ···· | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | | | - | - | _ | - | - | <u>-,</u> | | <u> </u> | - | | | | | <u> </u> | | | | | B 7 | - 3 (深度 0.5 m | 8/15 1 | N.D. 0.006 | 0.007 | 0.2 | 0.1 | N.D. 15 | N.D. | N.D. | N.D. | | B 7 | - 3 (深度 1 m | 8/15 1 | N.D. NI D | | | | | | | - | | _ | | | | - | - | | - | <u> </u> | - | ' | | | | B 7 | - 3 (深度 2 m | 8/15 1 | N.D. | | N.D. | N.D. | N.D. | N.D. | 0.006 | N.D. | 0.4 | N.D. | B 7 | - 3 (深度 2.47 m | | N.D. | 0.006 | 0.004 | 0.3 | N.D. 22 | N.D. | N.D. | N.D. | | | -6(深度0-0.05 m | 8/15 1 | N.D. | N.D. 0.006 | 0.002 | 0.3 | N.D. 16 | N.D. | N.D. | N.D. | | | -6(深度0- 0.5 m | | - | | | N.D. | | IX.D. | IV.D. | N.D. | N.D. | N.D. | N.D. | - | <u> </u> | ļ <u>.</u> | - | - | - | | | ļ <u> </u> | | - | | | | | | _ | | - | - | - T | | _ | | | -6 (深度 0.5 m | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | NID | <u> </u> | \ <u>-</u> | _ | - | N.D. | N.D. | N.D. | N.D. | N.D. | 0.006 | 0.003 | 0.2 | 0.1 | N.D. 20 | N.D. | N.D. | N.D. | | —— | | 8/15 1 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | <u> </u> | | <u> </u> | - | | | - | | <u> </u> | | - | - | - | _ | - | 1 | - | - | - | - | | | <u> </u> | | | -6 (深度 2 m) | | N.D. | N.D. | N.D. | | f | N.D. | | 0.002 | 0.3 | N.D. | | - 6 (深度 2.96 m) | | N.D. | | 0.003 | 0.4 | N.D. 21 | N.D. | N.D. | N.D. | | - | - 7 (深度0- 0.05 m) | | N.D. 0.007 | 0.003 | 0.3 | N.D. 16 | N.D. | N.D. | N.D. | | | | 8/16 1 | N.D. | N.D. | . N.D | N.D. | - | <u> </u> | | | | | - | <u></u> | _ | | - | | | | _ | | - | - 1 | _ | - | | | | <u> </u> | | 8/16 1 | N.D. | - N.D | | <u> </u> | | | <u> </u> | | | | | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.002 | 0.1 | N.D. 17 | N.D. | N.D. | N.D. | | | m /New selec | | N.D. - | | | _ | | _ | | - | - | - 1 | - | - | | | - | | _ | | _ | | - | | | | | - () | 8/16 1 | N.D. _N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.006 | 0.2 | 0.1 | N.D. 20 | N.D. | N.D. | N.D. | | | | 0, 20 1 | N.D. 0.003 | 0.004 | 0.2 | N.D. 40 | N.D. | N.D. | N.D. | | | | 8/16 1 | N.D. 0.003 | N.D. | 0.2 | N.D. 29 | N.D. | N.D. | N.D. | | | -8(深度0-0.05 m)
-8(深度0-0.5 m) | | N.D. | - | | - | - | | _ | | - | | | _ | - | | | _ | - | | | | | | -11.2. | | | | 1-7 | | | [| | | <u> </u> | | - | | _ | - | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.002 | 0.2 | N.D. 17 | N.D. | N.D. | N.D. | | | - 8 (深度 0.5 m) | 8/16 2 | N.D. | N.D. | N.D. | N.D. | <u>N.D.</u> | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | | - | | - | - | _ | - | | | | _ | - | | - | - | - | - | | | | | | | | - 8 (深度 1 m) | 8/16 2 | N.D. 0.003 | N.D. | 0.2 | N.D. | _ | - 8 (深度 2 m) | | N.D. 0.003 | 0.003 | 0.2 | N.D. 19 | N.D. | N.D. | N.D. | | | - 8 (深度 3 m) | | N.D. | | 0.006 | 0.1 | N.D. 26 | N.D. | N.D. | N.D. | | | - 8 (深度 3.43 m) | 8/16 2 | N.D. | N.D. | N.D. | N.D. | N.D. | _N.D. | N.D. | | 0.004 | 0.2 | N.D. | N.D. | | N.D. | 20 | N.D. | N.D. | N.D. | | | - 9 (深度0- 0.05 m) | | N.D. - | | _ | _ | | - | - | - | - | | | | | - ``. - | | - N.D. | К.Д. | - K.D. | N.D. | | _ K.D. | N.D. | N.D. | | · | | 8/15 1 | | | | | | - | _ | - | - 1 | _ | - 1 | N.D. | N.D. | N.D. | N.D. | N.D. | 0.006 | 0.006 | 0.2 | N.D. 250 | - | | - | | | | 8/15 1 | N.D. | _ | _ | | | - | - | | | | | - | | | | N.D. | N.D. | N.D. | N.D. | 200 | N.D. | N.D. | N.D. | | | | 8/15 1 | N.D. 0.006 | N.D. | 0.3 | N.D. ND | N D | - NT IS | | -,- | | | | | 8/15 1 | N.D. | 0.006 | N.D. | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | | N.D. | | N.D. | N.D. | N.D. | N.D. | | - | | 8/15 1 | N.D. | 0.006 | N.D. | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | 18 | N.D. | N.D. | N.D. | | B 7 | | 8/15 1 | N.D. | 0.006 | | 0.3 | N.D. | $\overline{}$ | N.D. | | N.D. | N.D. | | | N.D. | N.D. | N.D. | 20 | N.D. | N.D. | N.D. | | <u> </u> | 定量下限值 | | 0.0002 | 0.0004 | 0.002 | 0.004 | 0.0002 | 0.002 | 0.001 | 0.1 | 0.0006 | 0.003 | 0.001 | 0.002 | 0.01 | 0.1 | | 0.002 | 0.002 | 0.002 | 0.1 | | | | | | N.D. | N.D. | N.D. | N.D. | | N.D. | 15 | | N.D. | N.D. | | | 指定基準値 | | 0.002 | 0.004 | 0.02 | 0.04 | 0.002 | 0.02 | 0.01 | 1 | 0.006 | 0.03 | 0.01 | 0.01 | _: | 輸出されないこと | 0.0005 | 0.002 | 0.002 | 0.002 | 0.1 | 0.1 | 0.0003 | 0.002 | ;- | 0.0005 | 0.1 | 15 | 25 | 5 | 1.5 | 15 | 15 | 15 | 400 | 400 | | | 樹日立プラントサービス | | JIS K 110 1 | | | | | | | 1 1 | | | | + | Henroce | 150 | 250 | 50 | 15 | 150 | 150 | 150 | 4000 | 4000 | | 1 | 計量方法その1 | 1 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | 0102 | 0102 | JIS K
0102 | 昭和46年
森告59号 | JIS K
0102 | JIS K
0102 | | 昭和46年
森告59号 | | 昭和46年 「
職告59号 」 | | 昭和46年 日
東告59号 1 | | 昭和49年 | JIS K
0102 | JIS K
0102 | | 昭和46年
最告59号 | JIS K
0102 | JIS K | JIS K | JIS K | JIS K | | <u> </u> | | _ | 5.2 | 5.2 | 5.2 | 5,2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 55.4 | 65.2.1 | 38.3 | 付表1 | 67.4 | 54.4 | 61.4 | 付表6 | 47.3 | 付表5第1 | | 付表4 | 付表3 | 付表! | 55.3 | 65.2.1 | 38.3 | 付表1 | 67.2 | 0102
54.3 | 0102
61.2 | 0102
34.1 | 0102
47.3 | | (| ㈱日立プラントサービス | | JIS K | JISK | JIS K 昭和46年 | JIS K | JIS K | JIS K | 昭和46年 | JIS K I | 昭和46年 | 昭和46年 日 | 昭和46年 日 | 昭和46年! | 沼和49年 | JIS K | | JIS K | 昭和46年 | | | | | | | 1 | 計量方法 その2 | | 0125
5.1 0125 | 0125 | 0102 | 0102 | 0102 | 東告59号 | 0102 | 0102 | 0102 | 環告59号 | 0102 | 聚告59号 1 | 录告59号 ¥ | 桑告59号 \$ | 装告59号 | 聚告64号 | 0102 | JIS K
0102 | | 昭和46年
累告59号 | JIS K
0102 | | | | <u> </u> | | <u> </u> | V | V.1 | 9.1 | 3.1 | ə.1 | 0.1 | 5.1 | 5.1 | 5.1 | 55.4 | 65.2.1 | 38.3 | 付表1 | 67.4 | 54.4 | 61.4 | 付表6 | 47.3 | 付表5第1 | 寸表5第1 | | | 付表1 | | 65.2.1 | 38.3 | 付表1 | 67.2 | 54.3 | 61.2 | 34.1 | 47.3 | # 濃度計量証明書 証明書番号 第 \$120041 号 受 付 番 号 第 12211500-C 号 発行年月日 平成 24 年 9 月 18 日 東京都中央卸売市場 新市場整備部様 株式会社日立プラ 本社 〒170-603 東京都豊島区東 分析技術センタ 千葉県松戸 電話 FAX 047-367-6921 計畫証明事業登録番号 千葉県知事登録 第 503 計量管理者名 環境計量士 下記試料に対する計量の結果を次のとおり証明致します。 1. 件 名 豊洲新市場予定地における盛土の土壌調査委託(その1) 2. 採取年月日 平成24年8月15日~8月18日 3. 採取場所 東京都江東区豊洲六丁目地内 4. 採取者 ボーリング掘削(土壌コア採取): 清水建設株式会社 土壌試料分取及び運搬:株式会社日立プラントサービス 工级时间为水风口是欧 5. 計量の対象 土壌(溶出量および含有量) 6. 検液調整方法 溶出量:「土壌の汚染に係る環境基準について(平成3年8月環告第46号)付表」 含有量:「土壤污染対策法施行規則(平成15年3月環告第19号)付表」 #### 7. 分析機関 | 分析 | 斤機関名称 | ㈱日立プラントサービス | ㈱湘南分析センター | 習和産業㈱ | |----|--------------|-------------|-----------|-------------------------| | | 置証明事業
录番号 | 千葉県 第 503 号 | 神奈川県 第3号 | 千葉県 第 540 号 | | | 第1種特定 | 全11項目 | 全11項目 | 全11項目 | | 担担 | 有害物質 | (検液の作成含む) | (検液の作成含む) | (検液の作成含む) | | 当 | 第2種特定 | 全9項目 | | | | 項 | 有害物質 | (検液の作成含む) | | | | 目目 | 第3種特定 | 全5項目 | | ·台州(6) //• 人馬/次川月/(2/4) | | | 有害物質 | (検液の作成含む) | <u></u> | 有機りん化合物溶出量(※1) | ※1:検液の作成は、㈱日立プラントサービスにて実施。 8.
計量方法 別紙、計量結果一覧表 S120041-C (2/2) のとおり | 分析機関名称 | 分析機関及び計量方法の区分 | |-------------|---------------| | ㈱日立プラントサービス | 1 及び 2 | | ㈱湘南分析センター | 3 | | 習和産業㈱ | 4 | - 9. 計量の結果 別紙、計量結果一覧表 S120041-C (1/2~2/2) のとおり - 10. そ の 他 別紙、計量結果一覧表において『N.D.』とは、定量下限値未満であることを 表す。 # 株式会社 日立プラント 本社: 〒170-6034 東京都特 行: 〒271-0064 千葉県村 計量証明事業登録番号 千葉県知事登録 第503号 ## 計量結果一覧表 計量管理者 環境計量士 € 件名: 豊洲新市場予定地における盛土の土壌調査委託 (その1) 土壤溶出量 土壤含有量 四连化 1,1-ジクロ シス1,2-ジ 1,3-ジクロ ジクロロ テトラクロ 1,1,1-トリ 1,1,2-トリ トリクロロ ロエチレン クロロエチレン ロプロペン メタン ロエチレン クロロエタン エチレン 探取日 からかみひ 六価クロム 过料点名 シアン 化合物 水銀及び セレン及び 鉛及び 砒素及び ふっ素及び ほう素及び その化合物 その化合物 その化合物 その化合物 その化合物 その化合物 チオベン ベンゼン チウラム ピフェニル ポリ塩化 有機りん がジュ及び 六価クロム その化合物 化合物 水銀及び セレン及び 鉛及び 砒素及び ふっ素及び ほう素及び シアン化合物 ロエタン ロエチレン クロロエタン クロロエタン エチレン その化合物 化合物 カルブ 化合物 の化合物 (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/1) (mg/L) (mg/L) (mg/L) C 6 - 3 (深度0- 0.05 m) 8/16 1 N.D. C 6 - 3 (深度0- 0.5 m) 8/16 1 N.D. N.D. N.D. N.D. 0.002 0.002 N.D. 0.2 N.D. 17 N.D. N.D. 0.5 m) 8/16 1 N.D. C 6 - 3 (深度 1 m) 8/16 1 N.D. 0.003 N.D. 0.2 N.D. N.D. N.D. N.D. N.D. N.D. N.D. ND N.D. N.D. N.D. 19 N.D. N.D. N.D. 6-3(深度 2 m) 8/16 1 N.D. 0:002 N.D. 0.2 N.D. 17 ND ΝD N.D. 2.31 m) 8/16 1 C 6 ~ 3 (深度 N.D. 0.003 0.004 0.2 N.D. 20 N.D. N.D. N.D. C 6 - 6 (深度0-0.05 m) 8/16 2 N.D. C 6 - 6 (深度0- 0.5 m) 8/16 2 N.D. N.D. --N.D. N.D. N.D. 0.003 0.003 0.2 N.D. 20 N.D. N.D. N.D. N.D. C 6 - 6 (深度 0.5 m) 8/16 2 N.D. 1 m) 8/16 2 N.D. 0.004 0.009 0.3 N.D. C 6 - 6 (深度 2 m) 8/16 2 N.D. 0.004 0.003 0.3 N.D. 21 N.D. N.D. N.D. N.D. C 6 - 6 (深度 2.25 m) 8/16 2 N.D. | 0.004 | 0.007 0.3 0.1. N.D. 17 N.D. C 6 - 9 (深度0-0.05 m) 8/16 1 N.D. C 6 - 9 (深度0- 0.5 m) 8/16 1 N.D. N.D. N.D. N.D. N.D. 0.003 | 0.003 0.1 0.1 N.D. 20 N.D. N.D. N.D. C 6 - 9 (深度 0.5 m) 8/16 1 N.D. _ _ C 6 - 9 (深度 1 m) 8/16 1 N.D. N.D N.D. N.D. N.D. N.D. 0.003 | 0.003 N.D. 2 m) 8/16 1 N.D. 0.003 N.D. 0.2 N.D. 15 N.D. N.D. N.D. C 6 - 9 (深度 2.31 m) 8/16 1 N.D. 0.004 0.004 0.2 N.D. N.D N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 33 N.D. N.D. N.D. C 7 - 1 (深度0-0.05 m) 8/16 2 N.D. _ C 7 - 1 (深度0- 0.5 m) 8/16 2 N.D. N.D. 0.004 | 0.006 N.D. N.D. N.D. 0.3 0.1 N.D. 33 N.D. N.D. N.D. 7-1(深度 0.5 m) 8/16 2 N.D. 27-1(深度 m) 8/16 N.D. 0.004 0.009 .0.40.1 N.D. N.D N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 19 N.D. N.D. N.D. C 7 - 1 (深度 2 m) 8/16 2 N.D. 0.004 0.003 0.2N.D. N.D. 18 N.D. N.D. N.D. C 7 - 1 (深度 2.49 m) 8/16 2 N.D. 0.004 0.004 0.3 0.1 N.D. 24 N.D. N.D. N.D. C 7 - 2 (深度0-0.05 m) 8/16 2 N.D. N.D. 1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. C 7 - 2 (深度0- 0.5 m) 8/16 2 N.D. N.D. N.D. N.D. N.D. 0.003 0.002 0.2 N.D. C 7 - 2 (深度 0.5 m) 8/16 2 N.D. C 7 - 2 (深度 1 m) 8/16 2 N.D. 0.003 N.D. 0.2 N.D. C 7 - 2 (深度 2 m) 8/16 2 N.D. 0.003 0.004 0.2 N.D. 18 N.D. N.D. N.D. C 7 - 2 (深度 N.D. 3 m) 8/16 2 N.D. 0.003 0.004 0.2 N.D. 24 N.D. N.D. N.D. C 7 - 2 (深度 3.36 m) 8/16 2 N.D. | 0.003 | 0.003 0.2 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 22 N.D. N.D. N.D. N.D. N.D. N.D. C 7 - 3 (深度0-0.05 m) 8/15 1 N.D. C 7 - 3 (深度0- 0.5 m) 8/15 N.D. N.D. N.D. N.D. N.D. 0.006 0.006 0.1 0.1 N.D. 23 N.D. N.D. N.D. C 7 - 3 (深度 0.5 m) 8/15 l 1 N.D. _ _ C 7 - 3 (深度 1 m) 8/15 1 N.D. 0.006 N.D. N.D. N.D. 0.008 N.D. N.D. N.Đ. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 21 N.D. N.D. N.D. C 7 - 3 (深度 2 m) 8/15 1 N.D. 0.006 0.2 N.D. 19 N.D. N.D. N.D. C 7 - 3 (深度 3 m) 8/15 1 N.D. 0.006 N.D. 0.2 N.D. C 7 - 3 (深度 3.16 m) 8/15 1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N D N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.007 0.2 N.D. 21 N.D. N.D. N.D. C 7 - 4 (深度0-0.05 m) 8/16 2 N.D. _ C 7 - 4 (深度0- 0.5 m) 8/16 2 N.D. N.D. N.D. N.D. N.D. 0.003 | 0.003 0.2 N.D. 17 N.D. N.D. N.D. C 7 - 4 (深度 0.5 m) 8/16 2 N.D. -C 7 - 4 (深度 1 m) 8/16 2 N.D. 0.003 0.002 0.3 N.D. N.D 16 N.D. N.D. N.D. C 7 - 4 (深度 2 m) 8/16 2 N.D. 0.003 0.005 0.1 N.D. ND C 7 - 4 (深度 2.75 m) 8/16 2 N.D. 0.003 0.002 N.D. N.D. N.D. 0.2 N.D. 18 N.D. N.D. N.D. C 7 - 5 (深度0-0.05 m) 8/16 2 N.D. C 7 - 5 (深度0- 0.5 m) 8/16 2 N.D. N.D. N.D. N.D. N.D. 0.003 0.004 0.2 N.D. 20 N.D. N.D. N.D. C 7 - 5 (深度 0.5 m) 8/16 2 N.D. _ __ 1 m) 8/16 2 N.D. 0.003 N.D. 0.2 N.D. C 7 - 5 (深度 N.D. 0.003 800.0 0.2 0.1 N.D. 30 N.D. N.D. N.D. こ 7 - 5 (深度 3 m) 8/16 2 N.D. | 0.003 | 0.004 | 0.3 N.D. 7-5(深度 3.47 m 8/16 2N.D. N.D. N.D. N.D. | N.D. | N.D. N.D. N.D. N.D. 0.003 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.1 0.005 N.D. N.D. 0.3 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 22 N.D. N.D. N.D. こ7-6(深度0− 0.05 m) 8/15 2 🖡 N.D. C 7 - 6 (深度0- 0.5 m) 8/15 2 N.D. N.D. N.D. N.D. N.D. N.D. 0.005 N.D. N.D. 0.1N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 17 N.D. N.D. N.D. C 7 - 6 (深度 0.5 m) 8/15 2 N.D. 1 m) 8/15 2 N.D. 0.002 N.D. 0.3N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 16 N.D. N.D. N.D. 2 m) 8/15 2 N.D. 0.003 0.3 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D N.D. N.D. N.D. N.D. N.D. C 7 - 6 (深度 3 m) 8/15 2 N.D. 0.3 N.D. 3.15 m) 8/15 2 N.D. N.D. N.D. N.D. N.D. | N.D. | N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.2 N.D. #### 発行日: 平月 発行証明書番号: S1 株式会社 日立プラントサート 本社: 〒170-6034 東京都豊 分 析 技 術 センタ 住所: 〒271-0064 千葉県松 計量証明事業登録番号 千葉県 計量管理者 環境計量士 件名: 豊洲新市場予定地における盛士の十壌調査委託(その1) | 作名:豊洲新市 | 物子に地によ | っいる強 | エの工機能 | 性安比 | (401 | <u> </u> | | | | | | | | | Jahr Sch | | | | | | | | _ · | | | | | | | | | | | | | | |----------------|---------------|-------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------------|--------------------|---------------|---------------|-----------------|----------------|----------------|---------------|--------------|-----------------|----------------|----------------|----------------|--------------|--|--------------|----------------|---------------|-----------------|----------------|--------------|----------------|------------------|--------------|---------------|--------------|----------------| | | | | 型 四班化 | 1 2-2/40 | 1 1 3/20 | シス1,2-ジ | 1 2 2 2 2 | ジクロロ | 1=1=+- | 1 | 1 | 1115 | | | 壤溶 | | 1. | · · · · · · | | | т | | , | , | | r | | | | | <u> </u> | 堰 含 神 | T. | | | | | 試料点 | 名 | 採取日 | 炭 素 | ロエタン | ロエチレン | プロロエチレン | ロブロヘン | メタン | アトラクロ | 1,1,1-トリ
クロロエダン | 1,1,2~トリ
クロロエタン | | ベンゼン | かいかみ及び
その化合物 | ド 六価クロル
化合物 | シアン化合物 | 水級及び
その化合物 | セレン及び その化合物 | が 鉛及び
かその化合物 | 砒素及び
その化合物 | ふっ素及び
その化合物 | ほう素及び
その化合物 | | チオペン
カルブ | チウラム | ポリ塩化
ピフェニル | 有機りん
化合物 | か'対4及び
その化合物 | 六価クロム
化合物 | シアン化合物 | 水銀及び | セレン及びその化合物 | 鉛及び
その化合物 | 砒素及び
その化合物 | | | | | | τ | (mg/L) _(mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/kg) | | | 1 | (mg/kg) | | | (mg/kg) | ***.5_24 | | C 7 - 7 (深度(| - 0.05 m) | 8/18 | 4 N.D. | - | - | _ | _ | - | _ | _ | - | - | - | - | - (, | - | (mg/2) | - Ung/11g/ | (III,67 A.67 | (III.E) AE) | (mg/ xg/ | \IIIg/ Ag/ | (mg/ vg) | /mg/wg/ | (lilg/ kg/ | (ing/ kg/ | | C 7 - 7 (深度C | | 8/18 | 1 – | - | _ | - | _ | - | - | - | _ | - | _ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.005 | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | - | N.D. | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | N.D. | N.D. | | C 7 - 7 (深度0 | - 0.5 m) | 8/18 | 4 - | - | - | | l - | - | | | - | - | _ | - | 1 - | - | | - | | - | -: | - | | | | | N.D. | | - IN.D. | | N.D. | N.D. | - | | - N.D. | - IV.D. | | C 7 - 7 (深度 | 0.5 m) | 8/18 | 4 N.D. | - | | _ | | _ | | _ | - | | | | _ | - | - 11 | | | ··- <u>-</u> | - | _ | | | | | | C 7 - 7 (深度 | 1 m) | 8/18 | 1 - | _ | | <u> </u> | - | _ | - | - | - | _ | _ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.007 | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | 22 | N.D. | N.D. | N.D. | | C 7 - 7 (深度 | 1 m) | 8/18 | 4 N.D. | <u> </u> | - | - | _ | - | - | - | - | - | - | | | - | N.D. | | - 11.10. | _ N.D. | | N.D. | | | N.D. | | | C 7 - 7 (深度 | 2 m) | 8/18 | 1 - | _ | - | i - | - | - | - | - 1 | - | - | _ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | - | N.D. | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | N.D. | N.D. | | C 7 - 7 (深度 | 2 m) | 8/18 | N.D. - | - | - | - | _ | | - | - | | | - | - | - | N.D. | - 11.0. | | - K.D. | М.р. | 14.D. | 70 | - IV.D. | N.D. | | | C 7 - 7 (深度 | 2.86 m) | 8/18 | L - | _ | | - | | - | - | - | - | - | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | - 1 | N.D. | N.D. | N.D. | N.D. | N.D. | 21 | N.D. | N.D. | N.D. | | C 7 - 7 (深度 | | 8/18 4 | N.D. <u> </u> | - | - | - | - | - | - | | - | - | - | - | - | N.D. | | - 1 | - 11-12- | - | | | N.D. | N.D. | N.D. | | C 7 - 8 (深度0 | | 8/17 1 | l N.D. | | _ | _ | <u> </u> | <u> </u> | _ | _ | | | | - | _ | | - in.D. | | | | - - | | | | | - - | | C 7 ~ 8 (深度0 | - 0.5 m) | 8/17 | | _ | | | - | - | _ | - 1 | _ | - | _ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.2 | N.D. 18 | N.D. | N.D. | N.D. | | C 7 - 8 (深度 | 0.5 m) | 8/17 1 | N.D. - | - | - | _ | _ | _ | - | - | - | | - | | - | | | | | | N.D. | - 10 | N.D. | - N.D. | N.D. | | C 7 - 8 (深度 | 1 m) | 8/17 1 | N.D. 0.2 | N.D. N.Đ. | N.D. | N.D. | | C 7 - 8 (深度 | 2 m) | 8/17 1 | N.D. 0.002 | 0.3 | N.D. 18 | N.D. | N.D. | N.D. | | C 7 - 8 (深度 | 3 m) | 8/17 1 | N.D. | 0.002 | 0.3 | N.D. 20 | N.D. | N.D. | N.D. | | C 7 - 8 (深度 | 3.41 m) | 8/17 1 | N.D. | 0.002 | 0.3 | N.D. 22 | N.D. | N.D. | N.D. | | C 7 - 9 (深度0- | 0.05 m) | 8/16 1 | N.D. - | _ | - | - | - | - | - | - | - | - | - | - | | | | - 11.12. | - N.D. | - | N.D. | - | IV.D. | - N.D. | IV.D. | | C 7 - 9 (深度0- | 0.5 m) | 8/16 1 | - | _ | - | | - | - | - | - | | - | _ | N.D. | N.D. | N.D. | N.D. | N.D. | 0.004 | 0.002 | 0.1 | 0.1 | N.D. 24 | N.D. | N.D. | N.D. | | C 7 - 9 (深度 | 0.5 m) t | 8/16 1 | N.D. _ | _ | - | | - | - | - | - | - | - | - | | - | | | - | | - 11.5. | | | | Т.Б. | | | C 7 - 9 (深度 | 1 m) { | 8/16 1 | N.D. 0.004 | 0.008 | N.D. | C 7 - 9 (茶度 | 2 m) 8 | 3/16 1 | N.D. | 0.004 | 0.2 | N.D. 15 | N.D. | N.D. | N.D. | | C 7 - 9 (深度 | 3 m) 8 | 3/16
1 | N.D. | 0.008 | 0.1 | N.D. | C 7 - 9 (深度 | 3.14 m) 8 | 3/16 1 | N.D. | 0.009 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | | N.D. | N.D. | N.D. | N.D. | 18 | N.D. | N.D. | N.D. | | 定量 | - 11-11-1 | | 0.0002 | 0.0004 | 0.002 | 0.004 | 0.0002 | 0.002 | 0.001 | 0.1 | 0.0006 | 0.003 | 0.001 | 0.002 | 0.01 | 0.1 | 0.0005 | 0.002 | 0.002 | 0.002 | 0.1 | 0.1 | 0.0003 | 0.002 | 0.0006 | 0.0005 | 0.1 | 15 | 25 | 5 | 1.5 | 15 | 15 | 15 | 400 | 400 | | 指定 | 基準値 | | - 0.002 | 0.004 | 0.02 | 0.04 | 0.002 | 0.02 | 0.01 | 1 | 0.006 | 0.03 | 0.01 | 0.01 | 0.05 | 執出されないこと | 0.0005 | 0.01 | 0.01 | 0.01 | 0.8 | 1 | 0.003 | 0.02 | | 検出されないこと | | 150 | 250 | 50 | 15 | 150 | 150 | 150 | 4000 | 4000 | | (株)日立プラン | ノトサービス | | JIS K 昭和46年 | JIS K | JIS K | JIS K | 昭和46年 | JIS K | 昭和46年 | 现和46年 | 昭和46年 | 服和6年 | 1725n49£E | JISK | JIS K | | 昭和46年 | JIS K | | 計量方法 | ま その1 | 1 | 0125
5.2 0125 | 0125 | 0102 | 0102 | 0102 | 探告59号 | 0102 | 0102 | 0102 | 環告59号 | 0102 | 環告59号 | 環告59号 | 森告59号 | 環告59号 | 環告64号 | 0102 | 0102 | 0102 | 環告59号 | 0102 | 0102 | 0102 | 0102 | 0102 | | | | | - | | | | | | | | 5.2 | 5.2 | 5.2 | 55.4 | 65.2.1 | 38.3 | 付表1 | 67.4 | 54.4 | 61.4 | 付表6 | 47.3 | 付表5第1 | 付表5第1 | 付表4 | 付表3 | 付表1 | 55.3 | 65.2.1 | 38.3 | 付表I | 67.2 | 54.3 | 61.2 | 34.1 | 47.3 | | 制日立プラン | | 2 | JIS K
0125 K
0102 | JIS K | JIS K | 昭和46年 | JIS K | JIS K | JIS K | 昭和46年 | | 昭和46年 | | 昭和46年 | 昭和46年 | 昭和49年 | JIS K. | JIS K | JISK | 昭和46年 | JIS K | | 計量方法 | ₹ 0 2 | - | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 5.1 | 55.4 | 0102
65.2.1 | 0102
38.3 | 環告59号
付表1 | 0102
67.4 | 0102
54.4 | 0102
61.4 | 森告59号
付表6 | | | 環告59号
付表5第1 | 環告59号
付表4 | 菜告59号
付表3 | 環告64号
付表1 | 0102
55.3 | 0102
65.2.1 | 0102
38.3 | 環告59号
付表1 | 0102
67.2 | 0102
54.3 | 0102
61.2 | 0102
34.1 | 0102
47.3 | | 観湘南分杉 | | | JISK | JIS K | JIS K | JIS K | JIS K | JISK | JIS K | | | | | | | | | | 102103112 | | 172. | 1120 | 132. | | 00.2.1 | | 13501 | | 01.0 | 01.2 | 34.1 | 41.3 | | 計量 | | 3 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | 0125 | | | | | | | | | | | | | | | | | | | | | | | 1 | | | · | | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | | | | | | | | i | | | | | | | | | ĺ | ļ | | | - 1 | | | | 習和意 | | | JIS K | | | 7 | | | | | | | | | | 昭和49年 | | | Ì | | | | | | | | 計量 | 方法 | 4 | 0125
5.2 | | | | | — | [| • | | f | <u> </u> | | — | 深告64号 | | | | | | | | | — | | | | | | | | | | <u> </u> | | 0.2 | ٥.٤ | J.L | 9.2 | | | | | | | | | | | | | | 付表1 | | | | | | | | | | # 農度計量証明書 証明書番号 第 S120042 号 受 付 番 号 第 12211500-D 号 発行年月日 平成 24 年 9 月 18 日 東京都中央卸売市場 新市場 整備部 様 株式会社日立プラ 本社 〒170-6034 東京都豊島区東第 分析技術センタ 千葉県松戸で 電話 FAX 047 307 0521 計量証明事業登録番号 千葉県知事登録 第503.5 計量管理者名 環境計量士 | 下記試料に対する計量の結果を次のとおり証明致します。 1. 件 名 豊洲新市場予定地における盛土の土壌調査委託(その1) 2. 採取年月日 平成24年8月16日~8月17日 3. 採取場所 東京都江東区豊洲六丁目地内 4. 採 取 者 ボーリング掘削 (土壌コア採取): 清 水 建 設 株 式 会 社 土壌試料分取及び運搬 : 株式会社日立プラントサービス 5. 計量の対象 土壌(溶出量および含有量) 6. 検液調整方法 溶出量: 「土壌の汚染に係る環境基準について(平成3年8月環告第46号)付表」 含有量:「土壤汚染対策法施行規則(平成15年3月環告第19号)付表」 7. 分析機関 | | | *** | |------------|--------------|---------------| | 分析 | 斤機関名称 | (株)日立プラントサービス | | | 量証明事業
录番号 | 千葉県 第 503 号 | | | 第1種特定 | 全11項目 | | 担担 | 有害物質 | (検液の作成含む) | | | 第2種特定 | 全9項目 | | 当項目 | 有害物質 | (検液の作成含む) | | 8 | 第3種特定 | 全5項目 | | | 有害物質 | (検液の作成含む) | 8. 計量方法 別紙、計量結果一覧表 S120042-D (2/2) のとおり | 分析機関名称 | 分析機関及び計量方法の区分 | |-------------|---------------| | ㈱日立プラントサービス | 1及び2 | 9. 計量の結果 別紙、計量結果一覧表 S120042-D (1/2~2/2) のとおり 10. そ の 他 別紙、計量結果一覧表において『N.D.』とは、定量下限値未満であることを 表す。 #### 発行日: 平月 発行証明書番号: S1 株式会社 日立プラントサート 本社: 〒170-6034 東京都豊 分析技術センタ 住所: 〒271-0064 午葉県松 計量証明事業登録番号 千葉県知事登録 第503号 計量管理者 環境計量士 ## 計量結果一覧表 件名: 豊洲新市場予定地における盛士の土壌調査委託 (その1) 土壤溶出量 土壤含有量 探取日常生 四塩化 1,2-シ'クロ 1,1-シクロ シス1,2-シ 1,3-シクロ ジクロロ テトラクロ 1,1,1-トリ I,1,2-トリ 过料点名 トルクロロ シアン化合物 水銀及び セレン及び 鉛及び 砒素及び ふっ素及び ほう素及び ベンゼン ポリ塩化 有機りん かぶりム及び 六価クロム その化合物 化合物 シアン 化合物 水銀及び セレン及び 鉛及び 砒素及び ふっ素及び ほう素及び ロエタン ロエチレン クロロエチレン ロプロペン その化合物 その化合物 その化合物 その化合物 その化合物 その化合物 チウラム クロロエタン エチレン カルブ ピフェニル 化合物 (mg/L)(mg/L) (mg/L) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) D 6 - 3 (深度0- 0.05 m) 8/16 1 N.D. D 6 - 3 (深度0- 0.5 m) 8/16 1 N.D. N.D. N.D. N.D. N.D. 0.003 | 0.002 0.2 N.D. D 6 - 3 (深度 0.5 m) 8/16 1 N.D. -D 6 - 3 (深度 1 m) 8/16 1 N.D. ND 0.003 N.D. 0.003 0.2 N.D. 23 N.D. N.D. N.D. D 6 - 3 (深度 2 m) 8/16 1 N.D. 0.003 0.004 0.2 N.D. 17 N.D. N.D. N.D. D 6 - 3 (深度 2.23 m) 8/16 1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. ND N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.003 0.002 0.3 N.D. 19 N.D. N.D. N.D. D 6 - 6 (深度0-0.05 m) 8/16 1 N.D. _ D 6 - 6 (深度0- 0.5 m) 8/16 1 _ N.D. N.D. N.D. N.D. N.D. 0.004 0.002 0.2N.D. N.D. 59 N.D. N.D. N.D. D 6 - 6 (深度 0.5 m) 8/16 1 N.D. __ _ 1 m) 8/16 1 N.D. 0.003 0.002 0.3 N.D. N.D. N.D. ND N.D. N.D. N.D. N.D. N.D. N.D. N.D. 16 N.D. N.D. N.D. 2 m) 8/16 1 N.D. 0.003 | 0.002 | 0.2 N.D. 15 N.D. N.D. N.D. D 6 - 6 (深度 2.30 m) 8/16 1 N.D. 0.003 0.002 0.2 N.D. D 6 - 9 (深度0- 0.05 m) 8/17 1 N.D. _ _ _ D 6 - 9 (深度0- 0.5 m) 8/17 1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.2 N.D. N.D. N.D. 0.1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 18 N.D. N.D. N.D. D 6 - 9 (深度 0.5 m) 8/17 1 N.D. -_ D 6 - 9 (深度 1 m) 8/17 1 N.D. 0.003 0.3 N.D. 16 N.D. N.D. N.D. D 6 - 9 (深度 2 m) 8/17 1 N.D. 0.005 0.1 N.D. 16 N.D. N.D. D 6 - 9 (深度 2.56 m) 8/17 1 N.D. N.D N.D. 0.3 0.1 N.D. 25 N.D. N.D. N.D. D 7 - 1 (深度0- 0.05 m) 8/16 1 N.D. _ _ D 7 - 1 (深度0- 0.5 m) 8/16 1 N.D. N.D. N.D. N.D. N.D. 0.004 0.002 N.D. 0.1 N.D. 20 N.D. N.D. D 7 - 1 (深度 0.5 m) 8/16 1 N.D. _ D7-1(深度 1 m) 8/16 1 N.D. 0.003 0.002 0.3 N.D. 18 N.D. N.D. N.D. D7-1(深度 2 m) 8/16 1 N.D. N.D. N.D N.D. 0.003 0.002 0.2 N.D. 19 N.D. N.D. N.D. D 7 - 1 (深度 2.39 m) 8/16 1 N.D. N.D. N.D. N.D. N.D N.D. 0.003 0.003 0.2 N.D. 22 N.D. N.D. N.D. D 7 - 2 (深度0- 0.05 m) 8/17 1 N.D. -D 7 - 2 (深度0- 0.5 m) 8/17 1 N.D. N.D. N.D. N.D. N.D. N.D. 0.002 0.2 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 19 N.D. N.D. N.D. N.D. N.D. D 7 - 2 (深度 0.5 m) 8/17 1 N.D. _ _ _ D7-2(深度 1 m) 8/17 1 N.D. 0.005 N.D. D7-2(深度 2 m) 8/17 1 N.D. 0.3N.D. N.D. 18 N.D. N.D. N.D. D7-2(深度 3 m) 8/17 1 N.D. 0.002 0.3 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D: N.D. 19 N.D. N.D. N.D. D 7 - 2 (深度 3.80 m) 8/17 I N.D. 0.002 0.3 N.D. 17 N.D. N.D. N.D. D7-3(深度0-0.05 m) 8/16 1 N.D. D 7 - 3 (深度0- 0.5 m) 8/16 1 N.D. N.D. N.D. N.D. N.D. N.D. 0.005 0.1 0.1 N.D. D 7 - 3 (深度 0.5 m) 8/16 1 N.D. D 7 - 3 (深度 1 m) 8/16 1 N.D. 0.006 0.3 N.D. D7-3(深度 2 m) 8/16 1 N.D. 0.006 0.2 N.D. 15 N.D. N.D. N.D. 3 m) 8/16 1 N.D. D 7 - 3 (深度 N.D. 0.006 0.2 N.D. 15 N.D. N.D. N.D. 3.31 m) 8/16 1 N.D. D 7 - 3 (深度 N.D. 0.002 0.3 N.D. 19 N.D. N.D. |D 7 - 4 (深度0- 0.05 m)| 8/16 | 2 | N.D. _ D 7 - 4 (深度0- 0.5 m) 8/16 2 N.D. N.D. N.D. 0.003 0.003 N.D. N.D. 0.2 N.D. 20 N.D. N.D. N.D. 0.5 m) 8/16 2 N.D. _ _ ___ _ D 7 - 4 (深度 1 m) 8/16 2 N.D. 0.003 0.004 N.D. 0.2N.D. N.D. 19 N.D. D 7 - 4 (深度 N.D. N.D. 2 m) 8/16 2 N.D. 0.003 0.002 N.D. N.D. 0.2 N.D. 20 N.D. N.D. N.D. D 7 - 4 (深度 2.57 m) 8/16 2 N.D. 0.002 0.003 0.2 0.1N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 17 N.D. N.D. N.D. D 7 - 5 (深度0- 0.05 m) 8/17 1 N.D. _ D 7 - 5 (深度0- 0.5 m) 8/17 1 N.D. _ N.D. N.D. N.D. N.D. N.D. 0.002 0.2 N.D. 17 N.D. N.D. N.D. D 7 - 5 (深度 0.5 m) 8/17 1 N.D. 1 m) 8/17 1 N.D. 0.002 0.3 N.D. 15 N.D. N.D. N.D. D7-5(深度 2 m) 8/17 1 N.D. 0.4N.D. N.D. | N.D. | N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 15 N.D. N.D. N.D. 3 m) 8/17 1 N.D. 0.005 0.2 N.D. 23 N.D. N.D. N.D. D 7 - 5 (深度 3.92 m) 8/17 1 N.D. | N.D. | N.D. N.D. N.D. N.D. N.D. N.D. | 0.004 0.3 N.D. 19 #### 発行日: 平 発行証明書番号: S1 株式会社 日立プラントサーと 本社: 〒170-6034 東京都当 分析技術センタ 住所: 〒271-0064 千葉県松 計量証明事業登録番号 千葉県知事登録 第503号 計量管理者 環境計量士 ## 計量結果一覧表 件名: 豊洲新市場予定地における盛土の土壌調査委託(その1) 土壤溶出量 土壤含有量 探取日 製力 四塩化 炭素 (一-4) 1,3-シ'クロ ジクロロ テトラクロ 1,1,1-トリ 1,1,2-トリ トリクロロ か'ウム及び 六価クロム その化合物 化合物 ポリ塩化 有機りん が、シュ人及び 六価クロム ピフェニル 化合物 その化合物 化合物 試料点名 シアン 化合物 水無及び セレン及び 鉛及び 砒素及び ふっ素及び ほう案及び その化合物 その化合物 その化合物 その化合物 その化合物 水銀及び セレン及び 釣及び 砒素及び ふっ素及び ほう素及び その化合物 その化合物 その化合物 その化合物 ベンゼン シアン 化合物 シマジン チウラム ロエタン ロエチレン クロロエチレン ロプロヘン メタン ロエチレン クロロエタン クロロエタン エチレン カルブ (mg/L) (mg/L) (mg/L) (me/L)(mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) (ma/1) (mg/L) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) D 7 - 6 (深度0- 0.05 m) 8/16 2 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. D 7 - 6 (深度0- 0.5 m) 8/16 2 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 28 ND NЪ N.D. N.D. D7-6(深度 0.5 m) 8/16 2 N.D. D 7 - 6 (深度 1 m) 8/16 2 N.D. 0.003 0.2 N.D. 16 N.D. N.D. N.D. D 7 - 6 (深度 2 m) 8/16 2 N.D. 0.004 0.3 N.D. 17 N.D. N.D. N.D. N.D. 3 m) 8/16 2 N.D. N.D. D7-6(深度 N.D. 0.003 0.3 N.D. 15 N.D. N.D. N.D. D7-6(深度 3.33 m) 8/16 2 N.D. 0.002 0.2 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 20 N.D. N.D. N.D. N.D. N.D. D 7 - 7 (深度0- 0.05 m) 8/17 1 N.D. D 7 - 7 (深度0- 0.5 m) 8/17 1 N.D. N.D. N.D. N.D. N.D. 0.002 | 0.002 0.3 N.D. 20 N.D. N.D. N.D. D 7 - 7 (深度 0.5 m) 8/17 1 N.D. _ D 7 - 7 (深度 1 m) 8/17 1 N.D. 0.002 N.D. 0.4N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 17 N.D. N.D. N.D. D7-7(深度 2 m) 8/17 1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N:D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.003 0.3 N.D. 28 N.D. N.D. N.D. D 7 - 7 (深度 2.83 m) 8/17 1 N.D. ND N.D. N.D. N.D. N.D. N.D. N.D. 0.012 0.6 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 38 N.D. N.D. N.D. N.D. N.D. D 7 - 8 (深度0-0.05 m) 8/17 2 N.D. -D7-8(深度0-0.5 m)8/17 2 N.D. N.D. 0.002 N.D. N.D. N.D. N.D. 0.3 N.D. 15 N.D. N.D. N.D. D7-8(深度 0.5 m) 8/17 2 N.D. _ D7-8(深度 1 m) 8/17 2 N.D. 0.003 N.D. 0.3 N.D. 15 N.D. N.D. N.D. D7-8(深度 2 m) 8/17 2 N.D. 0.002 0.3 N.D. 16 N.D. N.D. D7-8(深度 3 m) 8/17 2 N.D. 0.005 0.3 N.D. 16 N.D. N.D. N.D. D7-8(深度 3.96 m) 8/17 2 N.D. 0.003 0.4 N.D. D 7 - 9 (深度0- 0.05 m) 8/16 2 N.D. D7~9(深度0-0.5 m) 8/16 2 N.D. N.D. N.D. N.D. N.D. N.D. 0.005 N.D. N.D. 0.10.1N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 21 N.D. N.D. N.D. 0.5 m) 8/16 2 D 7 - 9 (深度 N.D. D7-9(深度 1 m) 8/16 2 N.D. 0.004 0.1 N.D. D7-9(深度 2 m) 8/16 2 N.D. 0.002 0.3 N.D. D7-9 (疾度 3 m) 8/16 2 B 7-9 (疾度 3.41 m) 8/16 2 N.D. 0.004 0.2 N.D. 21 N.D. 0.005 0.2 N.D.
21 N.D. N.D. N.D. 0.0002 0.0004 0.002 0.004 0.0002 0.002 0.001 0.001 0.002 0.01 0.1 0.0006 0.003 0.1 0.0005 0.002 0.002 0.002 0.1 0.1 0.0003 | 0.002 | 0.0006 | 0.0005 0.1 15 25 5 1.5 15 15 15 400 400 0.002 0.004 指定基準値 0.02 0.04 0.002 0.02 0.01 0.01 0.01 0.01 0.8 0.006 0.03 0.01 0.01 0.05 検出されないこと 0.0005 1 0.003 0.02 0.006 Maintena 150 250 50 15 150 150 150 4000 4000 JIS K 0125 齢日立プラントサービス JIS K 0125 JIS K JIS K JIS K IIS K JIS K 0102 JIS K 0102 昭和46年 昭和46年 昭和46年 昭和46年 昭和46年 昭和49年 JIS K JIS K 0102 54.3 JIS K 昭和46年 JIS K 0102 67.2 JIS K 0102 IIS K 0125 5.2 0125 5.2 計量方法 その1 0125 0125 5.2 0125 5.2 0125 5.2 0125 0125 **撒告59**月 0102 環告59号 環告59号 環告59号 環告64号 付表5第1 付表5第1 付表4 付表3 付表1 0102 0102 0102 戒告50县 0102 5.2 5.2 5.2 5.2 5.2 55.4 65.2.1 38.3 付表! 67.4 54.4 61.4 付表6 47.3 65.2.1 61.2 55.3 38.3 付表1 JIS K 0125 5.1 JIS K 0125 JIS K 0125 5.1 JIS K 0125 5.1 JIS K 0125 5.1 ㈱日立プラントサービス JIS K JIS K JI\$ K JIS K JIS K JIS K 0102 55.4 JIS K - 0102 JIS K 0102 54.4 JIS K JIS K 取和46年 JIS K RZENAGE 昭和46年 昭和46年 昭和46年 昭和46年 昭和49年 JIS K JIS K JIS K 昭和46年 JIS K 0102 67.2 JIS K 0102 JIS K 0102 34.1 JIS K JIS K 0102 0125 5.1 0125 5.1 0125 5.1 0125 5.1 0125 聚告59号 | 環告59号 | 環告59号 | 環告59号 | 環告59号 | 駅告64号 | 付表5第1 | 付表5第1 | 付表4 | 付表3 | 付表1 計量方法 その2 0102 0102 0102 環告59号 0102 55.3 0102 65.2.1 0102 東告59号 5.1 65.2.1 38.3 付表1 67.4 # 濃度計量証明書 証明書番号 第 S120043 号 受 付 番 号 第 12211500-E 号 発行年月日 平成 24 年 9 月 18 日 東京都中央卸売市場 新市場整備部様 株式会社日立プ 本社 〒170-603 東京都豊島区東 分析技術センタ 干葉県松戸 電話 FAX 047-367-6921 計量証明事業登録番号 千葉県知事登録 第503.5 計畫管理者名 環境計量士 下記試料に対する計量の結果を次のとおり証明致します。 1. 件 名 豊洲新市場予定地における盛土の土壌調査委託(その1) 2. 採取年月日 平成24年8月17日~8月21日 3. 採取場所 東京都江東区豊洲六丁目地内 4. 採取者 ボーリング掘削 (土壌コア採取): 清水建設株式会社 土壌試料分取及び運搬 : 株式会社日立プラントサービス 5. 計量の対象 土壌(溶出量および含有量) 6. 検液調整方法 溶出量:「土壌の汚染に係る環境基準について(平成3年8月環告第46号)付表」 含有量:「土壤汚染対策法施行規則(平成15年3月環告第19号)付表」 #### 7. 分析機関 | 分析 | 斤機関名称 | ㈱日立プラントサービス | ㈱湘南分析センター | 習和産業㈱ | |----|--------------|-------------|-----------|----------------| | | 置証明事業
录番号 | 千葉県 第 503 号 | 神奈川県 第3号 | 千葉県 第 540 号 | | | 第1種特定 | 全11項目 | 全11項目 | 全11項目 | | 担 | 有害物質 | (検液の作成含む) | (検液の作成含む) | (検液の作成含む) | | 当 | 第2種特定 | 全9項目 | | | | 項 | 有害物質 | (検液の作成含む) | | | | 目 | 第3種特定 | 全5項目 | | 大機の)ルク船を川見ハツ | | | 有害物質 | (検液の作成含む) | | 有機りん化合物溶出量(※1) | ※1:検液の作成は、㈱日立プラントサービスにて実施。 8. 計 量 方 法 別紙、計量結果一覧表 S120043-E (7/7) のとおり | 分析機関名称 | 分析機関及び計量方法の区分 | |-------------|---------------| | ㈱日立プラントサービス | 1及び2 | | ㈱湘南分析センター | 3 | | 習和産業㈱ | 4 | - 9. 計量の結果 別紙、計量結果一覧表 S120043-E (1/7~7/7) のとおり - 10. そ の 他 別紙、計量結果一覧表において『N.D.』とは、定量下限値未満であることを 表す。 発行日: 3 発行証明書番号: S 株式会社 日立プラントサー 本社: 〒170-6034 東京都 分析技術センタ 住所: 〒271-0064 千葉県 計量証明事業登録番号 千乗県知事登4年第503号 1号 | 十量管理者 | 環境計量士 | | |-------|-------|--| | | | | | | ᆝᆘᅍ | -4017 | る盛ま | ニの土壌 | 調査委割 | E(その) | 1) | 境計量士 | | | | | |--------------------------------|--------------------------|--------------|---------------------------|--------------|---|----------------|----------------------|---------------------|------------------|----------------|--|-----------|-----------|-----------|--------------|-----------|--------------|--------------|-----------|-----------|---------------|----------------|-----------------|--------------|---------------|--------------|-----------------|---------------|------------------|--------------|----------------|-----------|--------------|------------|------------------|---------------|-------------| | | | | ## | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | - 1 | | | | | | | | | 土 | 壌溶 | 出量 | | | | | | | | | | | | | | | 土 | 壤 含 衤 | 7 🖶 | | | | | 試料 | 幕点名 | 探取 | 日 | | | | クローシス1,2-
ン クロロエチ | -シ 1,3-シ
レン ロプロへ | | ローテトラク | 7日 1,1,1一ト!
イン グロロエタン | | トリクロロ | ベンゼン | かける
その化合 | | シアン化合物 | 水銀及び | マレン及び | が一般及び | 砒素及び | ふっ素及び
その化合物 | ほう素及び | シマジン | チオペン | チウラム | ポリ塩化 | | からな及び | 六価クロム | | 水銀及び | セレン及び | が及び | ・砒素及び | ふっ素及び | ほう来及 | | | | <u> </u> | υ | (mg/L |) (mg/L |) (mg/L | 1 | | 1 | | . 1. | (mg/L) | (mg/L) | (mg/L) | | (mg/L) | (mg/L) | | | | 1 | (mg/L) | てのに音楽
(mg/L) | (mg/L) | カルブ
(mg/L) | (mg/L) | ピフェニル
(mg/L) | 化合物
(mg/L) | その化合物
(mg/kg) | | 化合物
(mg/kg) | 1 | その化合物 | l | その化合物
(mg/kg) | | | | | 度0- 0.05 m
度0- 0.5 m | | | N.D. | N.D. | N.D. | . N.D | . N.D | . N.D. | . N.D | . N.D. | N.D. | N.D. | N.D. | | - | Ī., <u> </u> | - | | - | | - | = | - | _ | | - | | - (iiig) kig) | | - Gilg/ Ag/ | - (mg/kg) | - (mg/Ag/ | - American | - (ilig/ kg/ | '(mg/kg)
— | (mg/k | | 6-3(深度 | 度 0.5 m) |) 8/1 | 7 2 | | | | | | . N.D. | . N.D | . N.D. | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | N.D. | N.D | | 3 6 - 3 (深度
3 6 - 3 (深度 | | | 7 2 | N.D. | N.D. | | | | | | | N.D. | 0.3 | N.D. 16 | N.D. | N.D. | N.D. | | 6-3(深度 | | | $\frac{7}{7} \frac{2}{2}$ | 4 | N.D. | N.D. | | | | | | N.D. 0.4 | N.D.
0.1 | N.D. | N.D. | N.D.
N.D. | N.D. 19 | N.D. | N.D. | N.D. | | | 变0 0.05 m)
变0 0.5 m) | | | N.D. | N.D. | | | . N.D | . N.D. | | | N.D. | N.D. | N.D. | - | <u> </u> | _ | | - | - | - | - | _0.1_ | N.D. | N.D. | - N.D. | - N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | <u>30</u> | N.D. | N.D. | N.D | | · 6 - 6 (深度 | | | | | N.D. | N.D. | . N.D. | . N.D. | . N.D. | . N.D | . N.D. | 0.002 | 0.3 | N.D. 19 | N.D. | N.D. | N.D | | 6 - 6 (深度
6 - 6 (深度 | | | | N.D. | N.D. | N.D. | | | . N.D. | N.D | N.D. 0.3 | N.D. -
18 | -
N.D. | -
N.D. | N.D | | 6-6(深度 | 更 2.62 m) | 8/1 | 7 1 | N.D. | N.D. | N.D. | | | | | | N.D. 0.003 | 0.4 | 0.1
N.D. | N.D. | | 隻0-0.05 m)
隻0-0.5 m) | | | N.D. | N.D. | N.D. | N.D. | . N.D. | | N.D | | N.D. | N.D. | N.D. | - | | - | - | - | - | - | - | - N.D. | N.D. | - N.D. | - N.D. | - N.D. | N.D. | N.D. | <u>N.D.</u> | N.D.
- | N.D.
- | N.D. | 16 | N.D. | _ N.D.
_ | <u>N.D.</u> | | 6-9(深度 | | 8/1
8/1 | | -
N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D | - N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.004 | 0.2 | N.D. 20 | N.D. | N.D. | N.D. | | 6 - 9 (深度 | | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D | N.D. 0.003 | 0.1 | N.D. -
N.D. | N.D. | N.D. | N.D. | N.D. | | 6 - 9 (深度 | · | | | N.D. | N.D. | N.D. | N.D. | | | N.D. | | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
0.002 | 0.3 | N.D. 16 | N.D. | N.D. | N.D. | | | E0- 0.05 m) | | | N.D. | N.D. | N.D. | N.D. | | N.D. | | N.D. | N.D. | N.D. | N.D. | - N.D. | - N.D. | - | _ | - N.D. | N.D. | V.VUZ
- | 0.5 | N.D.
- | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | N.D. | <u>16</u> | N.D. | N.D. | N.D. | | 7 - 1 (茶度
7 - 1 (茶度 | €0- 0.5 m)
€ 0.5 m) | · · · · · | | N.D. -
N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.2 | N.D. | 7-1(深度 | | 8/1 | | N.D. 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | -
N.D. | N.D. | -
N.D. | 20 | -
N.D. | N.D. | N.D. | | <u>7 - 1 (深度</u>
7 - 1 (深度 | | | | N.D.
N.D. | N.D. | N.D. | N.D. | | | N.D. 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | 21 | N.D. | N.D. | N.D. | | | €0- 0.05 m) | | | | N.D. | N.D. | N.D. | | | N.D. | N.D. | N.D. | N.D. | N.D. | - | | - | - N.D. | N.D. | N.D. | N.D.
- | 0.3 | N.D.
- | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D. | <u>21</u> | N.D. | N.D. | N.D. | | 7 - 2 (深度
7 - 2 (深度 | ₹0- 0.5 m)
₹ 0.5 m) | | | N.D. -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.2 | N.D. 15 | N.D. | N.D. | N.D. | | 7-2(深度 | [1 m) | 8/13 | 7 2 | N.D. 0.003 | 0.4 | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. |
N.D. | -
N.D. | 16 | N.D. | N.D. | N.D. | | 7 - 2 (深度
7 - 2 (深度 | | | | | N.D. | N.D. | N.D. | | N.D. 0.002 | 0.3 | N.D. 23 | N.D. | N.D. | N.D. | | | €0- 0.05 m) | 8/18 | 3 4 | N.D. | N.D. | N.D. | | | N.D. - N.D. | | N.D. | N.D | N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | <u>15</u> | N.D. | N.D. | N.D. | | 7 - 3 (深度
7 - 3 (深度 | E0- 0.5 m)
E0- 0.5 m) | 8/18 | | = | - | - | - | - | - | - | - | - | | - | N.D. 0.2 | 0.1 | N.D. | N.D. | N.D. | N.D. | - | | N.D. | N.D. | N.D. | N.D. | 24 | N.D. | N.D. | N.D. | | 7-3(深度 | 0.5 m) | 8/18 | 4 | N.D. | N.D. | N.D. | N.D. | -1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | - | | | | - | | | - | <u>-</u> | | - | | - | N.D.
- | - | - | - | | | | - - | | | | 7 - 3 (深度
7 - 3 (深度 | | 8/18
8/18 | | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | -
N.D. |
N.D. | N.D. 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | | N.D. | 7-3(深度 | 2 m) | 8/18 | 1 | 1 | - | | _ | | - | - | - | _ | - | - | N.D. | N.D. | N:D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | - N.D. | N.D. | N.D. | -
N.D. | - N.D. | N.D. | N.D. |
N.D. | N.D. | N.D. | N.D. | | 7 - 3 (深度
7 - 3 (深度 | | 8/18 | | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | -
N.D. |
N.D. | -
N.D. | -
N.D. | N.D. | 0.004 | 0.2 | -
N.D. | -
N.D. | -
N.D. | - | -
- | N.D. | - | | - | | - | _ | | | | | 7-3(深度 | | | | N.D. - | - | - N.D. | - N.D. | - N.D. |
 | - | - | - N.D. | - IV.D. | - N.D. | N.D. | N.D. |
N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D. | | <u>7 - 3 (深度</u>
7 - 3 (深度 | . 0.0/ | | -1 | N.D. -
N.D. | -
N.D. | N.D. 0.003 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | | N.D. | N.D. | N.D. | | N.D. | | N.D. | N.D. | | | 0- 0.05 m) | 8/17 | | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | - | - | | - | _ | 1 | - | _ | | - | - | - | - | N.D. | - | | - | | - | | - | - | | | | 0- 0.5 m)
0.5 m) | | | | N.D. | N.D. | N.D. | -
 N.D. | N.D. |
N.D. | N.D. |
N.D. | -
N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.004 | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | 7 - 4 (深度 | 1 m) | 8/17 | 1 | N.D. | N.D. | N.D. | | | 0.2 | | | | N.D. | | | -
N.D. | N.D. | N.D. | N.D. | N.D. | 20 | N.D. | N.D. | N.D. | | 7 - 4 (深度 | 2 m)
2.97 m) | 8/17 | 1 | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | | | | N.D. | N.D. | | | | N.D. | 7 - 5 (深度(| 0-0.05 m) | 8/17 | 1 | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | - | - | | | | - | | - | N.D.
- | - | - | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D.
- | 16 | N.D. | N.D. | N.D.
- | | <u>, - 5 (深度)</u>
7 - 5 (深度 | 0- 0.5 m)
0.5 m) | 8/17 | $\frac{1}{1}$ | N.D.
N.D. | - N.D. | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | | N.D. | N.D. | 15 | | N.D. | N.D. | | 7 - 5 (深度 | 1 m) | 8/17 | 1 | N.D. | | | N.D. | N.D. | 0.3 | N.D. | N.D. | | | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | | N.D. | -
N.D. | N.D. | | 7 - 5 (深度
7 - 5 (深度 | 3 m) | 8/17 | 1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D | ND | | N.D. | | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | 0.003 | | N.D. 23 | N.D. | N.D. | N.D. | | 7 - 5 (深度 | 3.48 m) | 8/17 | 1 | N.D. | | | N.D. | N.D. | N.D. | 0.002 | 0.2 | | | | | N.D. | N.D. | N.D. | N.D. | | | | | | | N.D. | | <u>ィー 0(深度</u> 0
7-6(深度0 | 0- 0.05 m)
0- 0.5 m) | 8/18 | 1 | N.D. | N.D. | N.D. | N.D.
- | N.D. –
N.D. | - | -
N.D. | | | - | - | - | - | - | - | _ | - | | - | _ | - | | - | | _ | - | | 7 ~ 6 (深度0 | 0- 0.5 m) | 8/18 | 4 | | | <u> </u> | - | | - | | - | - | _ = _ [| | - | -
- | - K.D. | -
- | N.D. | N.D. | - N.D. | <u>-</u> | N.D. | N.D.
- | N.D. 25
- | N.D. | N.D. | N.D. | | 7 - 6 (深度
7 - 6 (深度 | 1 m) | 8/18 | | - | | _ | N.D. -
N.D. | N.D. | - I |
N.D. | -
N.D. | –
N.D. | 0.3 | -
N.D. | -
N.D. | -
N.D. | - N.D. | -
N.D. | | - N.D. | - N.D | - N.D | - | - | - | | | | | 7 - 6 (深度 | 1 m) | 8/18 | 3 | | | | | N.D. | - | - | - N.D. | N.D. | - IV.D. | - N.D. | - 0.3 | N.D. | - N.D. | N.D. | N.D. | N.D. | - | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | 16 | N.D. | N.D.
- | N.D. | | 7 - 6 (深度
7 - 6 (深度 | 2 m) | 8/18 | 1 | - | | | - | - | - - | - | - | - | | - | -
N.D. | –
N.D. | -
N.D. | - ND | - N.D. | N.D. | -
0.002 | 0.3 | -
N.D. | -
N.D. | -
N.D. | - N.D. | | N.D. | - N.D | - N.D. | - N.D | - | -
N.D. | - | - | | | | 7 - 6 (深度 | 2 m) | 8/18 | 3 | | | | N.D. | N.D. | N.D. | N.D. | | | N.D. | N.D. | - | - | - | -
- | - | - N.D. | - | - | - I | - I | - 'Y'.D'. | N.D. | N.D.
- | - | N.D. | - N.D. | | 7 - 6 (深度
7 - 6 (深度 | 3 m) | 8/18 | 1 | _ | | - | | - | - - | - | | - | - | | N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | - | -
0.3 | N.D. | N.D. | N.D. | -
N.D. | -
N.D. | N.D. | - N.D | - N.D. | - N.D. | - N.D. | -
ND | - | - | - | - | | 7 - 6 (深度 | 3 m) | 8/18 | 3 | | | | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | - | - N.D. | - | - | - N.D. | - N.D. | - | - | - | - N.D. | N.D.
- | N.D. | N.D.
- | - | N.D. | N.D. | N.D. | N.D. | N.D. | <u>16</u> | N.D. | N.D. | N.D. | | 7 - 6 (深度
7 - 6 (深度 | 3.87 m) 8 | 8/18 | 1 | <u>-</u> | | | _ | - | _ | - | - | | - | |
N.D. | N.D. | N.D | N.D. | -
N.D. | N.D. | 0 002 | 0.4 | -
N.D. | N.D. | -
N.D. | -
N.D. | N.D. | N.D. | - N.D. | - N.D. | - N.D. | - N.D. | -
N D | -
10 | - | - | | | - 6 (深度 | 3.87 m) 8
3.87 m) 8 | 8/18 | 3 | N.D. | | | N.D. | N.D. | N.D. | N.D. | 1—— | N.D. | N.D. | N.D. | - | - | - | _ | | - IV.D. | - | - | - | - | - | - | - N.D. | | - N.D. | - L | N.D. | N.D.
- | - | - 1 | - | - | N.D.
- | | | | | д II | - 1 | - | _ | _ | - | - | _ | ! - | _ | - 1 | - 1 | - 1 | - 1 | - 1 | - | - | - 1 | - | - | _ | - | - 1 | | - | N.D. | | - | | _ | | - | _ | | _ | 計量結果一覧表 # <u>計量結果一覧表</u> 発行日: ² 発行証明書番号: 5 株式会社 日立プラントサー 本社: 〒170-6034 東京都 分析技術センタ 住所: 〒271-0064 千葉県 計量証明事業登録番号 千葉県知事: 第503号 | 件名: 豊洲新市場 | 予定地には | おける基 | ¥土の: | 上壤調金 | 至委託 | (その1 |) | 計重智 | !理者 瑪 | 環境計量士 | | 7 | | | |-------------------------------------|----------------------|---|----------------------------|---------------|------------------|------------------|-----------|-----------|-----------------|---------------|------------------------|-----------|---------------|-----------|---------------------|--------------|-----------|---------------|-----------|-----------------|----------------|----------------|-------------|-----------|----------------|-----------|---------------|----------------|-----------------|--------------|--------------|-----------|-------------|------------------|--------------|------------------|-----------| | | • | | 9
H | | | | | | | | | | | | 土 | 壌 溶 | 出量 | | | | | | | - | - | | | , - | 1 | | | <u></u> | 集含有 | īĒ | | | | | 試料点名 | · | 採取日 | 集金 匹
調方 し
及法 し | 塩化 1
炭素 | 1,2-シ'クロ
ロエタン | 1,1-シウロ
ロエチレン | | 1,3-シケ | ロ ジクロロ
ノ メタン | アトラクロ
ロエチレ | 2 1,1,1-トリ
ン クロロエタン | 1,1,2-トリ | トリクロロ
エチレン | ベンゼン | , か ! 沙ム及び
その化合物 | 大価クロム
化合物 | シアン化合物 | 水銀及び
その化合物 | セレン及び | グ 鉛及び
物での化合物 | 砒素及び
その化合物 | ふっ衆及び
その化合物 | ほう素及び | シマジン | チオベンカルブ | チウラム | ポリ塩化
ピフェニル | | かミウム及び
その化合物 | 六価クロム
化合物 | シアン化合物 | 水銀及び | セレン及びりその化合物 | 約及び | | | | | C 2 2 OFFICE | 2.45 | 0.45 | | يد زوست | (mg/L) | (mg/L) | (mg/L) | (mg/L) | | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | | (mg/L) | (mg/L) | (mg/L) | 1 | | (mg/L) | (mg/L) | (mg/L) | 1 | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/kg) | (mg/kg) | | | 1. 1 | ていに音楽
(mg/kg) | | その化合物
(mg/kg) | | | E7-7(深度0-
E7-7(深度0- | | 8/17
8/17 | $\frac{2}{2}$ N | √.D.
- | N.D. - N.D. | | - N.D. | - | - | - | - | - | | | - | - | | - | | - | | - | - | _ | _ | | _ | | E 7 - 7 (深度 | 0.5 m) | 8/17 | | | N.D. | N.D. | N.D. | N.D. | | N.D. N.D.
- | N.D.
- | N.D. | N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D. | <u>19</u> | N.D. | N.D. | N.D. | | E 7 - 7 (深度
E 7 - 7 (深度 | | | | | N.D. | N.D.
N.D. | N.D. | N.D. | | N.D. -+ | -} | 0.3 | N.D. | E7-7(深度 | 2.67 m) | 8/17 | 2 N | .D. | N.D. N.D.
N.D. | N.D.
0.006 | 0.3 | N.D.
0.1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | 15
N.D. | N.D. | N.D. | N.D. | | E7-8(深度0-
E7-8(深度0- | | | | .D.
- | N.D. - N.D. | | _ | -
N.D. | - | - | - | - | | - | / - | _ | - | | | - | - | _ | | - | | - | | | E7-8(深度 | 0.5 m) | 8/17 | | | N.D. N.D.
- | N.D. | N.D. | N.D.
- | N.D.
- | N.D. | N.D. | 0.2 | N.D. N.D | N.D. | N.D. | N.D. | <u> 18</u>
– | N.D. | N.D. | N.D. | | E7-8(深度
E7-8(深度 | | 8/17
8/17 | | | N.D. | 0.005 | 0.3 | N.D. 17 | N.D. | N.D. | N.D. | | E7-8(深度 | 3 m) | 8/17 | 2 N | .D. | N.D. N.D.
0.003 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | 18
30 | N.D. | N.D.
N.D. | N.D. | | E 7 - 8 (深度
E 7 - 9 (深度0- (| 3.50 m)
0.05 m) | 8/17
8/18 | 2 N
4 N | | N.D.
N.D. | N.D. | N.D. | N.D. | | N.D. 0.005 | 0.2 | N.D. 20 | N.D. | N.D. | N.D. | | E7-9(深度0- | 0.5 m) | 8/18 | | - | - | _ | - | - | - N.D. | N.D. | - N.D. | - IV.D. | - N.D. | - N.D. | 0.2 | N.D. | N.D. | -
N.D. | N.D. | N.D. | - - | N.D. | N.D. | N.D. | N.D. | -
N.D. | 15 | -
N.D. | -
N.D. |
N.D. | | E7-9(深度0-
E7-9(深度 | 0.5 m) | 8/18
8/18 | 4 N | -
.D. | -
N.D. | -
N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | –
N.D. | N.D. | N.D. | <u>-</u> | - 1 | | - | | - | - | - | - | - | | - | | N.D. | - | - | _ | | - | - | - | | | | E 7 - 9 (深度 | 1 m) | 8/18 | 1 | | - | - | | _ | - | - IV.D. | _ | - | - N.D. | - N.D. | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | -
- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. |
N.D. | N.D. | | E 7 - 9 (深度
E 7 - 9 (深度 | 1 m)
2 m) | -/ | 4 N. | .D. | N.D. - N.D. | -
N.D. | | | - | . – | | - | - | | - | - | | N.D. | | - | | - | | - | | | | | E7-9(深度 | 2 m) | 8/18 | 4 N. | D. 1 | N.D. N.D.
- | 0.005 | 0.2 | N.D. | N.D. | N.D.
- | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | <u>29</u>
- | _ N.D. | N.D.
- | N.D. | | E 7 - 9 (深度
E 7 - 9 (深度 | 3 m) | 8/18
8/18 | 1 N. | D. 1 | -
N.D. |
N.D. | N.D. | -
N.D. | N.D. | N.D. |
N.D. | N.D. | -
N.D. |
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | | N.D. | | | 3.61 m) | 8/18 | 1 | | - | - | | - | - N.D. | - | - IV.D. | N.D. | - N.D. | - N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0:002 | 0.003 | 0.3 | N.D.
N.D. | N.D. | N.D. | N.D. | -
16 | - N.D. |
N.D. |
N.D. | | E 7 - 9 (深度 3
E 8 - 4 (深度0- 0 | 3.61 m)
0.05 m) | | 4 N.
3 N. | | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | | - | _ | - | - | | - | - | | | - | - | | N.D. | | - | | | - | - 10 | - | - | - | | E 8 - 4 (深度0- | 0.5 m) | 8/18 | | | - | - | - | - | - N.D. | - | N.D. | | - N.D. | N.D. | N.D. | N.D. |
N.D. | N.D. | NíD. | N.D. | 0.002 | 0.2 | N.D. | N.D. | N.D. | -
N.D. | N.D. | -1 |
N.D. | -
N.D. | -
N.D. | N.D. | -
N.D. | -
N.D. |
N.D. | N.D. | -
N.D. | | E 8 - 4 (深度0-
E 8 - 4 (深度 | | 8/18 4
8/18 3 | 1 N. | | -
N.D. | -
N.D. | -
N.D. | N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | - | - | - | | | | - | | | _ | | | - | N.D. | - | | | | - | - | - | | - | | E 8 - 4 (深度 | 1 m) | 8/18 | <u> </u> | | _ | - | | _ | - N.D. | | - N.D. | - N.D. | - N.D. | 0.3 | N.D. | N.D. | N.D. | N.D. |
N.D. | |
N.D. |
N.D. | N.D. | -
N.D. | N.D. | -
N.D. |
N.D. | N.D. | N.D. | | E 8 - 4
(深度
E 8 - 4 (深度 | 1 m) (| 8/18 3
8/18 4 | | $\neg \neg$ | V.D. | N.D. N.D.
- | N.D. | - | | - | | - | - | | 1 | - | - | | - | - | | - | - | - | - | - | - | - | - | - N.D. | | | 2 m) 8 | 8/18 1 | | | - | | | | | - | - | - | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. |
N.D. | N.D. | N.D. | -
N.D. | -
N.D. | N.D. | -
N.D. |
N.D. |
N.D. | N.D. | N.D. | | | 2 m) 8 | 8/18 3
8/18 4 | N. | | V.D. | N.D. | - | 1 1 | - | | - | - | - | - | | - | _ | | | == | - | | _ | - | - | | - | - | | 461.1 | 2.94 m) 8 | | | | - | - | - | | - | | - | - | | _ | N.D. 0.3 | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D.
- | | N.D. |
N.D. | N.D. | N.D. | 18 |
N.D. | N.D. | N.D. | | E 8 - 4 (深度 2 | | 3/18 4 | N. | D. N | V.D. | N.D. - | | - | - | | - | _ | _ | | _ | _ | == | - | | - | | - | _ | - | | - | | | | E8-5(深度0-0. | | | N. | D. N | V.D. | N.D. | | N.D. | | - | | | - | | | | | - | | - | N.D.
- | | <u>-</u> | | | | - | | | | | | 0.5 m) 8
0.5 m) 8 | 3/20 1
3/20 1 | N.I | D. N | -
J.D. | -
N.D. | N.D. | N.D. |
N.D. | N.D. |
N.D. | N.D. | - N.D. | 0.002 | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | $\overline{}$ | N.D. | N.D. | N.D. | N.D. | 18 | N.D. | | N.D. | | E 8 - 5 (深度
E 8 - 5 (深度 | | 3/20 1 | | | l.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.3 | N.D. | -
N.D. | N.D. | 17 | N.D. |
N.D. | -
N.D. | | E 8 - 5 (深度 2 | 2 m) 8
.95 m) 8 | 3/20 1 | NI |) N | I.D. | ND | ND | ND | N.D. | | N.D. | | 0.006 | 0.002
0.002 | | 0.1
N.D. | N.D. | | N.D. | N.D.
N.D. | N.D. | E 8 - 6 (深度0- 0.
E 8 - 6 (深度0- 0 | .Ob m)i 8 | 3/201 1 | II N.I | <u>). N</u> | I.D. | N.D. -] | - | _ | - | - | - | - | - | - | - | - | - | _ | - N.D. | N.D. | - N.D. | - N.D. | N.D. | - N.D. | - 18 | <u>.и.р.</u> | N.D. | N.D.
- | | E8-6(深度 0 |).5 m) 8 | 3/20 1 | N.I |). N | -
I.D. | -
N.D. | –
N.D. |
N.D. | - N.D. |
N.D. | N.D. | -
N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D | N.D. | 0.002 | 0.2 | N.D. 16 | N.D. | | N.D. | | E 8 - 6 (深度
E 8 - 6 (深度 | 1 m) 8 | /20 1 | N.I |). N | I.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.005 | 0.3 | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | -
24 | N.D. | N.D. | -
N.D. | | 38-6(深度 | 3 m) 8 | /20 1 | l N.I |). N | J.D. | N.D. | N.D. | N.D. | N.D. | N.D. N.D. | | | | N.D. | N.D. | | N.D. | N.D. | N.D. | 0.003
N.D. | N.D. | | | | N.D. 17 | N.D. | N.D. | N.D. | | E 8 - 6 (深度 3.
E 8 - 7 (深度0- 0. | .44 m) 8 | /20 1 | N.I |). N | .D. | N.D. - N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | 0.4 | N.D. | N.D. | N.D. | N.D. | | | N.D. | | | | | 18
17 | | | N.D. | | 3 8 - 7 (深度0- 0 | .5 m) 8 | /18 1 | - | | -
- | N.D. | - N.D. | N.D. | N.D. | N.D. (| N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | ND | N D | -
N.D. | <u>- </u> | 0.2 | N.D. | N.D. | -
N.D. | - N.D. | -
N.D. | - | N.D. | - N.D. |
N.D. | | | | - [| - A115 | - | | 3 8 - 7 (深度0- 0
3 8 - 7 (深度 0 | 0.5 m) 8 | $\frac{18}{19}$ 4 | - N.F | 1 | -
.D. | | - | - | | | | | - | | | - | - | - | _ | | - | - | - | - | - | - | -
- | N.D. | - IV.D. | - N.D. | - N.D. | | N.D.
- | - N.D. | - N.D. | N.D. | N.D. | | 8 - 7 (深度 | 1 m) 8 | /18 1 | 1 - | | - | - | N.D. -
N.D. | N.D. | N.D. | N.D. | -
N.D. | 0.006 | -
0.002 | 0.3 | -
N.D. | -
N.D. | - N.D. | N.D. | N.D. | - |
N.D. | -
N.D. | - N.D. | N.D. | - N.D. | - 16 | - N.D | | - N | | 38-7(深度
38-7(深度 | 1 m) 8,
2 m) 8, | | | | .D. | N.D. | | N.D. | | | | N.D. | | N.D. | - | _ | - | ,- | | _ | - 1 | - | - | | - | - | - | N.D. | - I | - I | - IV.D. | - | - N.D. | 16
- | N.D. | N.D. | N.D.
- | | 8 - 7 (深度 2 | 2 m) 8, | /18 4 | N.E |). N | .D. | N.D. | N.D. | N.D. | N.D. | - N.D. | 0.002
- | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 19 | N.D. | N.D. | N.D. | | 3 8 - 7 (深度
3 8 - 7 (深度 | 3 m) 8. | /18 1 | 1 – | | | _ | - | _ | _ | - | | - | - | | N.D. | | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | - | N.D. | | N.D. | N.D. | N.D. | 18 | | N.D. | N.D. | | :8 - 7 (深度 3.4 | 49 m) 8, | /18 1 | N - | | - - | - | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | -
N.D. | N.D. | N.D. | -
N.D. | N.D. | -
0.005 | 0.3 | 0.1 | N.D. | -
N.D. | N.D. |
N.D. | N.D. | -
N.D. | - N.D. | -
N.D. | N.D. | - | - | | -
N.D. | | | 8 - 7 (深度 3.4
8 - 8 (深度0- 0.0 | 49 m) 8, | /18 4 | N.D | N. | D. | N.D. | | | | | | | | N.D. | - | - | - | - | | - | - | - | | | - | - IV.D. | - IN.D. | N.D. | - | N.D.
- | N.D. | N.D. | | <u>8 - 8</u> (深度00. | .5 m) 8/ | /21 2 | - | | - | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D.
N.D. | -
N.D. | - N.D. | -
0.003 | 0.3 | 0.1 | - N.D. | - N.D. | N.D. | -
N.D. | - | N.D. | -
N.D. | - N.D. | -
N.D. | -
N.D. | -
15 | - N.D. | -
N.D. | - N.D. | | 8-8(深度0-0.
8-8(深度 0. | .5 m) 8/ | $\frac{/21}{/21}$ 2 | N.D | | -
D | - N D | -
N.D. | -
N.D. | -
N.D. | - N.D. | - N.D. | - N.D. | ~
N.D. |] | - | | - | - | | - | - [| - | | - | - [| - | - | N.D. | - | - | - | -
- | - N.D. | - | - | - | (N.D. | | 8-8(深度 1 | m) 8/ | /21 2 | N.D | . N. | D. 1 | N.D. | N.D. | N.D. | | | | | | N.D. |
N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | -
0.004 | 0.3 | N.D. | -
N.D. | N.D. | N.D. | N.D. | - | N.D. | -
N.D. | -
N.D. | N.D. | N.D. | -
16 | - N.D. | -
N.D. | - N D | | 8-8(深度 1
8-8(深度 2 | m) 8/ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | N.D | N | | | -
N.D. | -
N.D. | - | | - | | - | | - | - | | - | - | - | [| - | - | | - | - | - | N.D. | - | - | - | | - | _ | - | | | | 8-8(深度 2 | m) 8/ | 21 4 | - | | | - | - N.D. | - IN.D. | - IV.D. | N.D. | - I | IN.D. | N.D. | N.D. | N.D | N.D. | N.D. | N.D. | N.D. | N.D. | 0.004 | 0.3 | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D | N.D. | N.D. | N.D. | | <u>16</u> | N.D. | N.D. | N.D. | 2/ | | | | | | | | | | 1111 | | | _: | | | | | | | # 計量結果一覧表 発行日: 平 発行証明書番号: S 株式会社 日立プラントサー 本社:〒170-6034 東京都! 分析技術センタ 住所:〒271-0064 午葉県 計量証明事業登録番号 平 計量管理者:環境計量士 € | 件名: 豊洲新井 | 万場予定地に | おける | 盛土 | の土壌 | 周査委託 | (その1 | ι) | ė | | | | | | | | | | • | | | | | | | | | - | | | | 計畫領 | 理者、現 | 境計量士 | | | | | |--------------------------------|-----------------|--------------|--------------|----------------|----------------|-----------------|--------------------|---------------------|-------------|-------------|--------------------|--------------------|----------------|--------------|----------------|-----------------|--------------|-----------|--------------|-----------|---------------|--------------------|-----------|-----------|---------------|------------|-----------------|---------------|------------------|----------------|----------------|-----------|------------------|----------------|------------------|-----------------|-----------------| | | | | 2 | | | | | | | | | | | | 土 | 壌 溶 | 出量 | | • | | | · | - | | | | | | T | | | <u>±</u> | 壌 含 4 | T # | | | | | 試料。 | 点名 | 探取 | 製造 | 四塩化
炭素 | 1,2-ジクロロエタン | 1,1-シク
ロエチレン | プローシス1,2
プロロエチレ | ジ 1,3-シク
シ ロプロペン | | | 1,1,1-トワ
クロロエタン | 1,1,2-トリ
クロロエタン | トリクロロ
エチレン | ベンゼン | かりA及び
その化合物 | ア 六価クロ
・ 化合物 | 4 シアン
化合物 | 水銀及び | ドセレン及び | びが発び | 砒素及び | が ふっ素及で
物 その化合物 | びほう素及び | y
シマジン | チオペン | チウラム | ポリ塩化 | 有機りん | からか及び | | | 水銀及び | セレン及び | 鉛及び | 砒素及び | | ほう素及び | | | | | ซื | (mg/L) | (mg/L) | 1 ' ' | | 1 | 1 | | 1 ' | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | | (mg/L) | | | | mg/L) | | (mg/L) | カルブ
(mg/L) | (mg/L) | ピフェニル
(mg/L) | 化合物
(mg/L) | その化合物
(mg/kg) | 化合物
(mg/kg) | 化合物
(mg/kg) | 1 | その化合物
(mg/kg) | | その化合物
(mg/kg) | Ī | 1 | | E8-8(深度
E8-8(深度 | | 8/2 | | N.D. | N.D. | N.D. | | | N.D. | | | | N.D. | N.D. | N.D. | N.D. | N.D. | (tilg/1.) | N.D. | N.D. | N.D. | N.D. | N.D. | 16 | N.D. | (mg/kg)
N.D. | (mg/kg)
N.D. | | E 8 - 8 (深度 | | | | N.D. -
 N.D. | N.D. | N.D. | -
N.D. | 0.003 | 0.3 | N.D. | N.D. | N.D. | <u>-</u> - | - N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | - | - | - | _ | - | _ | | E8-8(深度 | | 8/21 | | | - | Ţ <u>.</u> | | - | | | - | <u> </u> | - | _ | - | - | - N.D. | - N.D. | - N.D. | - | - | | N.D. | N.D. | - IV.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | 16
- | N.D. | N.D. | N.D. | | E8-9(深度
E8-9(深度 | | 8/21 | | N.D. - N.D. | - 002 | - | - | - | - | - | - | - | - | 1 | - | - | <u>-</u> | | | | _ | | E8-9(深度 | 0.5 m) | 8/21 | 4 | | - | <u> </u> | | _ | | _ | | - | | - | - N.D. | - N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.3 | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | N.D. | E 8 - 9 (深度 | | 8/21 | | N.D.
N.D. | N.D. -
 ND | - ND | -
N.D. | -
ND | ~
N.D. | | - | - | - | - | - | | - | | - | - | | | _ | - | | | E8-9(深度 | 1 m) | 8/21 | 4 | - | | _ | _ | | - | - N.D. | - N.D. | - N.D. | - N.D. | N.D. | - N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | 0.3 | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | . N.D. | N.D. | N.D. | 22 | .N.D. | N.D. | N.D. | | E 8 - 9 (深度
E 8 - 9 (深度 | | 8/21
8/21 | 2 | N.D. 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | - | N.D. | N.D. | N.D. | N.D. | N.D. | 19 | N.D. | N.D. | N.D. | | E8-9(深度 | 3 m) | 8/21 | | N.D. 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. | N.D. | N.D. | N.D. | -
N.D. | 31 | -
N.D. | N.D. | N.D. | | E8-9(深度
E8-9(深度 | 3 m)
3.60 m) | 8/21
8/21 | | N.D. | N.D. | -
N.D. | N.D. | N.D. | -
N.D. | N.D. | - ND | -
N.D. | - N.D. | –
N.D. | -
N.D. | - N.D. | - | - | - | - | | - | - | - | _ | - | | N.D. | _ | - | - | | - | - | _ | _ | | | E8-9(深度 | 3.60 m) | 8/21 | 4 | | | | N.D. | - 18.D. | - N.D. | N.D.
 – | N.D. | _ IV.D. | N.D.
- | - N.D. | 0.4 | N.D. N.D.
- | N.D. | N.D.
- | N.D. | <u>16</u> | N.D. | N.D. | N.D. | | E 9 - 4 (深度) | |
8/20 | | N.D.
- | N.D. - | - | - | - | - | - | - | - | | | | - | | - | | | - | | | | - | | | | E 9 - 4 (深度 | 0.5 m) | 8/20 | 1 | N.D. N.D.
- | N.D. | N.D. | N.D. | N.D. | 0.008 | N.D. | 0.2 | N.D. <u>N.D.</u> | N.D. | | E 9 - 4 (深度
E 9 - 4 (深度 | 1 m)
2 m) | 8/20
8/20 | | N.D.
N.D. | N.D. 0.002 | 0.4 | N.D. 20 | N.D. | N.D. | N.D. | | E 9 - 4 (深度 | 3 m) | 8/20 | 1 | N.D. N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | 0.3 | N.D. N.D.
N.D. | N.D. | N.D. | N.D. | 15
17 | N.D.
N.D. | N.D. | N.D. | | E 9 - 4 (深度
E 9 - 5 (深度0 | 3.45 m) | 8/20
8/20 | | N.D. 0.002 | N.D. | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | E 9 - 5 (深度) | ⊢ 0.5 m) | 8/20 | 1 | | - N.D. | - N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. 0.002 | 0.2 | N.D. | - N.D. | N.D. | N.D. | -
N.D. | -
N.D. | N.D. | -
N.D. | N.D. | -
N.D. | - N.D. | -
N.D. | -
N.D. | -
N.D. | - N.D. | | E 9 - 5 (深度
E 9 - 5 (深度 | 0.5 m) | 8/20
8/20 | 3 | N.D. _ | - | | - | - | - | - | _ | - | - | - | | - | - | | - | - N.D. | N.D.
- | N.D.
- | | E 9 - 5 (深度 | | 8/20 | 3 | N.D.
N.D. | N.D. 0.003 | 0.3 | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | 19 | N.D. | N.D. | N.D. | | E 9 - 5 (深度
E 9 - 5 (深度 | 2 m)
2 m) | | 1 | -
N.D. |
N.D. | -
ND | - | - | - | - | - | - | _ | | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.003 | 0.2 | N.D. 15 |
N.D. | N.D. | N.D. | | E 9 - 5 (深度 | 2.93 m) | 8/20 | 1 | N.D. | | N.D. | N.D | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. 0.4 | N.D. | -
N.D. | N.D. | -
N.D. | -
N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. |
N.D. | -
20 | -
N.D. | - N.D. | _ | | E 9 - 5 (深度
E 9 - 6 (深度0 | 2.93 m) | | 3 | N.D. - | _ | - | - | - | - | - | - | - | - | - | - | - | | - | - IN.D. | - N.D. | - K.D. | | - | N.D.
- | N.D. | N.D.
- | | E 9 - 6 (茶度0 | | | 1 | <u>- N.D.</u> | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.2 | N.D. | -
N.D. | -
N.D. |
N.D. |
N.D. |
N.D. | N.D. | -
N.D. | -
N.D. |
N.D. | -
N.D. | - | | - | - | | E 9 - 6 (深度
E 9 - 6 (深度 | | 8/20
8/20 | | N.D. - | - | - | | - | - | | - | - | - | | - | | | - | - I | - IV.D. | - N.D. | _N.D. | 15
- | N.D. | N.D.
- | N.D.
- | | E 9 - 6 (深度 | | 8/20 | | N.D. N.D.
0.004 | 0.3 | N.D. 17 | N.D. | N.D. | N.D. | | E 9 - 6 (深度
E 9 - 7 (深度0 | | 8/20
8/20 | | N.D. 0.004 | 0.3 | N.D. | 19
N.D. | N.D. | N.D.
N.D. | N.D. | | E 9 - 7 (深度0- | | 8/20 | 1 | - N.D. | N.D.
- | N.D. N.D | N.D. | N.D. |
N.D. | -
N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. | -
N.D. | N.D. | N.D. |
N.D. | -
N.D. | -
N.D. | N.D. | ~
N.D. | -
N.D. | N.D. | -
N.D. | - | - | - | | E 9 - 7 (深度
E 9 - 7 (深度 | 0.5 m) | 8/20
8/20 | 3 | N.D. - | - | - | | - | - | - | - | | - | - | - | | | - N.D. | - | - N.D. | - | - N.D. | - IN.D. | N.D. | N.D. | N.D.
- | | E 9 - 7 (深度 | | 8/20 | 3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | -
N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | 0.005 | 0.3 | N.D. N.D | N.D. | N.D. | | E 9 - 7 (深度
E_9 - 7 (深度 | 2 m) | 8/20 | 1 | -
N.D. | -
ND | - N.D. | | - | | - | | - | | - | N.D. 0.4 | N.D. | N.D. | N.D. | <u>-</u>
17 | | N.D. | N.D. | | E 9 - 7 (深度 | 2.99 m) | 8/20 | | _ | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. |
N.D. | N.D. |
N.D. | N D | - N D | 0.002 | 0.2 | ND | - N.D. | - N D | N.D. | -
N.D. | - N.D. | N.D. | - | N.D. | -
N.D. | - N.D. | - ND | - I | -
ND | | | E 9 - 7 (深度
E 9 - 8 (深度0- | 2.99 m) | 8/20 | 3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | | | | N.D. | - | - | - | - | - | - | - | - | - | - | - | - | - | - N.D. | - L | N.D. | N.D. | N.D. | | E 9 ~ 8 (深度0- | 0.5 m) | 8/20 | 1 | - | N.D. | iv.D. | N.D. | - | - | N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. | -
N.D. | N.D | -
N.D. |
N.D. | N.D. | 0.002 | 0.1 | N.D. | - N.D. |
N.D. | -
N.D. | -
N.D. | - ND | -
N.D. | - N.D. | -
N.D. | -
N.D. | -
N.D. | - N.D. | -
N.D. | | | | E 9 - 8 (深度
E 9 - 8 (深度 | 0.5 m)
1 m) | | | | N.D. | | N.D. | - | - | _ | - | - | | - | - | _ | - | - | - | | - | - | - | - | - IN.D. | N.D. | N.D. | N.D. | N.D.
- | N.D.
- | | E 9 - 8 (深度 | 1 m) | 8/20 | 4 | N.D. | N.D. | N.D. |
_N.D. | N.D. | -
N.D. | N.D. | N.D. | -
N.D. | N.D. 0.4 | N.D. | N.D. | N.D. | N.D.
- | N.D. 16 | N.D. | N.D. | N.D. | | E 9 - 8 (深度
E 9 - 8 (深度 | 2 m)
2 m) | 8/20 | 1 | , - | _
N.D. | · | | - | | | - | | - | - } | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.007 | 0.1 | N.D. | E 9 - 8 (深度 | 3 m) | 8/20 | 1 | - 1 | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D | N.D. | N D | ר חוא | -
0.004 | 0.1 | -
N.D. | N.D. | N.D. | N.D. | -
N.D. | - | | - | - | - | - | - | - | | | | E 9 - 8 (深度
E 9 - 8 (深度 | 3 m) | 8/20 | 4 | | N.D. | N.D. | | | | N.D. | | N.D. | N.D. | N.D. | - | | - | - | | - | - | _ | | - | - | - | - | - | N.D.
- | - | N.D.
- | N.D.
- | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | | E 9 - 8 (深度 | 3.51 m) | 8/20 | 4 | N.D. | N.D. | N.D. | N.D. |
N.D. | -
N.D. | - N.D. | N.D. | N.D. | -
N.D. | - N.D. | N.D. | N.D. | N.D. | N.D. | _N.D. | N.D. | 0.002 | 0.1 | N.D. | N.D. | N.D. | N.D. | | E 9 - 9 (深度0-
E 9 - 9 (深度0- | 0.05 m) | 8/18 | 4 | N.D. _ | | _ | | - | - | | | - | - | - 1 | | - | - | | - | | - | | - | - - | - | | | E 9 - 9 (深度0- | 0.5 m) | 8/18 | 4 | - | - | | - | | | - + | | - | -+ | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | | E 9 - 9 (深度
E 9 - 9 (深度 | 0.5 m) | 8/18 | 4 | N.D. | N.D. | N.D. | N.D. | | N.D. | | N.D. | N.D. | N.D. | N.D. | _ | | - | | - | - | - | | - | - 1 | - | | - | - N.D. | | - | | - | | - | - | - | | | E 9 - 9 (深度 | 1 m) | | | N.D. | N.D. | N.D. |
N.D. | -
N.D. | -
N.D. | N.D. | N.D. | - N.D. | -
N.D. | -
N.D. | N.D. 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | E 9 - 9 (深度
E 9 - 9 (深度 | 2 m) | 3/18 | 1 | - 1 | | | _ | | | - | | _ | _ | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | - | N.D. | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | N.D. | -
N.D. | | E 9 - 9 (深度 | 2 m) 8 | 3/18 | 1 | - [| | | - | | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | -
N.D. | - N.D | - ND | -
N.D. | ND | N D | 0.002 | | -
N.D. | -
N.D. |
N.D. | -
N.D. |
N.D. | N.D. | -
N.D. | - | - | - | - | - | - | - | | | E 9 - 9 (深度
E 9 - 9 (深度 | 3 m) 8 | 3/18 | 4 1 | | | N.D. | | | | N.D. | N.D. | | N.D. | N.D. | - | _ | _ | - | - | | _ | - | | | - | - | - IN.D. | N.D. | -
- | - I | N.D. | N.D.
- | N.D. | 15
- | N.D. | N.D.
- | N.D. | | E9-9(深度 | 3.56 m) 8 | 3/18 | 4 | -
N.D. | N.D. | N.D. | N.D. | -
N.D. | - N.D. |
N.D. | N.D. | N.D. | - N.D. | - N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | 0.002 | N.D. | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | | E 10 - 4 (深度0- | 0.05 m) 8 | /18 | 4 | N.D. | | N.D. | - | | | | | | | | - | | | - | - | - | - | - - | | _ | - | - | - <u>-</u> | - | | 3/7 発行日: 平 発行証明書番号: S 株式会社 日立プラントサー 本社: 〒170-6034 東京都! 分析技術センタ 住所: 〒271-0064 千葉県: 計量証明事業登録番号 千葉米和手 計量管理者 環境計量士會 件名: 豊洲新市場予定地における盛土の土壌調査委託(その1) <u>計量結果一覧表</u> | | ļ | | £ # | <u> </u> | | | 1. | | | | | | | | ± | 堰 溶 | 出量 | | | | | | | | | | | | 1 | | | ± | 坡 含: | 有量 | | | — | |---|-----------------|-------------------------|--------------|---|------------------|-----------------|---------------------|--|---------------------|----------------|----------------|--------------|-------------------|----------|--------------|----------------|----------------|----------------|-----------|------------------|-------------------------|---|--|---------|---------------|--------------|-----------------|----------------|--------------------|--------------|----------------|--------------|--|----------------|-----------------|----------------|-------| | 試料点名 | ĺ | 探取日 | 2000年 | 質化 1
 素 | 1,2-シ'クロ
ロエダン | 1,1-シク
ロエチレン | ローシス1,2-:
クロロエチレ | シー1,3-シャ
シーロプロペ | クロ ジクロ
ン メタン | | | | リ トリクロロ
ノ エチレン | | が対域を
その化合 | び 六価クロ | A シアン
化合物 | 水銀及び | セレン及び | が
・ | 砒素及び
をの化合物 | かつ素及で | びほう楽及び | シマジン | チオペン | チウラム | ポリ塩化 | | #}`₹ ? #A及び | | | | ゼレン及び その化合物 | | 砒素及び | ふっ素及 | OF 13 | | | | | | z/L) | (mg/L) | (mg/L) | (mg/L) |) (mg/L | 1 | | | 1 | 1 | | , | | (mg/L) | | (mg/L) | | | | 1 | (mg/L) | カルブ
(mg/L) | (mg/L) | ピフェニル
(mg/L) | 化合物
(mg/L) | その化合物
(mg/kg) | 1 | 化合物
(mg/kg) | 1 | | 1 | | 1 | - 1 | | - 4 (深度0- 0.5
- 4 (深度0- 0.5 | m) | 8/18 | 1 | | | _ | | - | = | Ţ. <u>-</u> | | - | - | _ | N.D. | N.D. | N.D. | N.D. | | N.D. | | 0.3 | | N.D. | N.D. | N.D. | N.D. | Girg/L/ | N.D. | N.D. | N.D. | N.D. |) (mg/kg)
N.D. | (mg/kg) | (mg/kg)
N.D. | (mg/kg
N.D. | | | | _ | 8/18 | 4 N. | D. | N.D. | N.D. | N.D. | N.D. | . N.D. | - N.D. | N.D. | | -
N.D. | <u>-</u> | - | | | _ | _ | | - | | - | | - | _ | _ | N.D. | | _ | _ | | | - | - | - 11.0. | + | | - 4 (深度 1 | | 8/18 | 1 | | - | | - 11.15. | | . N.D. | - N.D. | N.D. | N.D. | . N.D. | 0.002 | 0.006 | 0.3 | 0.1 | N.D. | - N.D. | -
 N/D | - N.D. | - | -
N.D. | <u>-</u> | - | <u> </u> | - | - |] <u> </u> | | Ţ. | | /100 | _ | 8/18 | 4 N. | D. | N.D. | N.D. | N.D. | N.D. | N.D. | . N.D. | N.D. | N.D. | N.D. | N.D. | - | - A.D. | - N.D. | | - N.D. | - | -
0.000 | - 0.3 | 0.1 | N.D. 33 | N.D. | N.D. | | | | _ | 8/18
8/18 | 1 N. | . | N.D. |
N.D. | N.D. | - N.D. | | | <u> </u> | | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | - | N.D. | N.D. | N.D. | N.D. | N.D. | 34 | N.D. | N.D. | + | | | | 8/18 | 1 1 | | - | - N.D. | N.D. | N.D. | . N.D. | . N.D. | | - N.D. | | -
 YED | -
ND | - | - | | N.D. | | | - | | - | | - | - | | | | | | 4 N. | D. | N.D. | N.D. | N.D. | N.D. | . N.D. | N.D. | N.D. | N.D. | N.D. | | - IN.D. | N.D. | - N.D. | - N.D. | N.D. | N.D. | N.D. | 0.3 | N.D.
- | N.D. | N.D. | N.D.
- | N.D. 19 | N.D. | N.D. | 1 | | | | 8/18
8/18 | | - |
N.D. | -
N D | | - | | - | | | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.002 | 0.4 | N.D. | N.D. | ·N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | ╁ | | - 5 (深度0- 0.05 | m) | 8/18 | 3 N. | | N.D. | N.D. | N.D. | N.D. | | | N.D. | N.D. | N.D. | N.D. | | - | | | ļ | | | <u> </u> | ļ <u> </u> | - | | . | | N.D. | | _ | | - | | _ | _ | _ | 1 | | - 5 (深度0- 0.5 | m) | 8/18 | 1 - | | - | - | - | | - | - | - 1 | - N.D. | - N.D. | - N.D. | 0.003 | 0.4 | 0.1 | N.D. | N.D. | N.D. |
N.D. | - | -
N.D. | N.D. | N.D | N.D. | L - | 10 | - N. D. | -
 NID | + | | - 5 (深度0- 0.5
- 5 (深度 0.5 | | | 4 -
3 N.J | | - | | - | - | - | | | - | - | | - | | _ | | - | - | - | | - | - | - | - | | N.D. | - IX.D. | - N.D. | N.D. | N.D. | N.D. | 1 <u>5</u> | N.D. | N.D. | + | | - (| | 8/18 | 3 N.I | <u>-</u> - | N.D. | <u>N.D.</u> | N.D. - ND | <u>-</u> | | , - <u>-</u> | - | _ | |] | - | | _ | | - | _ | _ | | | | <u> </u> | =:: | - | _ | 十 | | | m) | | 3 N.I | D. | N.D. | N.D. | N.D. | N.D. | | N.D. 0.004 | N.D. | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | 30_ | N.D. | N.D. | Ţ | | - () | | 8/18 | 4 - | | - | | | | _ | - | | | - | - | | - | <u> </u> | - | - | | - | - | | | | | | N.D. | _ | | | - | _ | - | - | | ╁ | | - 43-44 | | 8/18 :
8/18 : | N.I | . - | -
N.D. | N.D. | N.D. | | - N.D. | - N.D. | - | ļ <u>, -</u> | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.004 | 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | - | N.D. ╁ | | - () | m) 8 | -7 | <u> </u> | <u>^ </u> | - I | N.D. | - N.D. | | - | - | _ | - | _ = | | | <u> - </u> | | | - | | | | | - | | _ | | - | _ | 1 | | - 43-4-4- | | 3/18 | _ = | | - 1 | | | - | | | - | - | - | | N.D. 0.3 | N.D. | N.D. | N.D. | -
N.D. | N.D. -
N.D. | + | | - () | m) {
m) { | 3/18 3
3/18 7 | N.I |). | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | _ = | _ | | | _ | | | - | - | _ · | - | | - | | - | - N.D. | - | - N.D. | - N.D. | - N.D. | IV.D. | N.D. | + | | | m) 8 | | _ | | - | - | - | | - - | - | - | ╁╌┋╌ | | | N.D. | N.D. | - N.D | - | - | | - 004 | - | <u> </u> | - | - | - | | N.D. | | | | | | - | | | 1 | | - / | m) 8 | | N.E |).] | N.D. - N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | 0.004 | 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D.
- | N.D. | _N.D | N.D. | N.D. | <u>16</u> | N.D | N.D. | 1 | | - <u>5 (深度 4 1</u>
- <u>5 (深度 4.46 1</u> | m) 8 | | <u> </u> | | | | <u> </u> | - | - | | | - | - | | - | | - | | _ | | | | - | | | - | | N.D. | | | -· <u>-</u> | - | | - - | <u>-</u> | - | ł | | - 5 (深度 4.46 1 | | | N.E | <u>, </u> | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | - ND | - | N.D. | N.D. | N.D. | N.D. | | 0.003 | 0.004 | 0.4 | 0.1 | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | 18 | N.D. | N.D. | ţ | | - 5 (深度 4.46 1 | m) 8 | 3/18 4 | - | | - | | - K.D. | N.D. | - K.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | | - | - - | - | | | | <u> </u> | <u>-</u> | | - | | - | | | | | | | | | - | Į | | 6 (深度0~ 0.05 ɪ | | 3/18 4 | N.D |).] | N.D. | _ | _ | - | | _ | | | - | | | | - | N.D. | | | _ | | - - | <u> </u> | | <u>-</u> | Ŧ | | - 6 (深度0- 0.5 r
- 6 (深度0- 0.5 r | m) 8 | 3/18 1
1/18 4 | | | | - | - | <u> </u> | | | - | | | | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. t | | - 6 (深度 0.5 r | | | N.D |). 1 | N.D. - | | - | | | | | | | | | - | | N.D. | | | | | | | | | Ţ | | - /\ - | m) 8 | | <u>_</u> | | = | | _ | | - | - | - K.D. | - | - N.D. | - N.D. | 0.3 | N.D. | N.D. | -
N.D. | N.D. | -
N.D. | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | NID. | - N.D. | ļ | | - /\ | - | /18 4
/18 1 | N.D |). N | V.D. | N.D. | <u>N.</u> D. | N.D. _ | - | | _ | | _ | | | - | | - | - | - | N.D. | | | - | - IV.D. | - N.D. | - N.D. | N.D. | N.D. | ł | | | n) 8 | | N.D | . N | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | <u>N.D.</u> | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. İ | | - 4744.1. | | /18 1 | _ | | - | | _ | | - | - | - | - | - N.D. | IV.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.002 | 0.3 | - I
N.D. | N.D. | N.D. | N.D. |
N.D. | N.D. | -
N.D. | N.D. | -
N.D. | N.D. | - N.D. | - N.D. | - ND | | ļ | | · 6 (深度 3 n
· 6 (深度 3.71 n | n) 8 | /18 <u>4</u>
/18 1 | N.D | | V.D. | N.D. - | - | - | - | | - | | - | - | - 1 | - | - | - | N.D. | - I | – N.D. | - K.D. | N.D. | N.D. | N.D. | N.D. | N.D. | ł | | - 171-02 | $\frac{n}{8}$ | | N.D | - 1 | | -
N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | - | - ND | N.D. 0.4 | N.D. | N.D. | | N.D. | N.D. | = | N.D. | N.D. | N.D. | N.D. | N.D. | _ 16 | N.D. | N.D. | t | | 7 (深度0- 0.05 m | n) 8 | /18 3 | N.D | | | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. N.D. | N.D. | | | | | | | - <u>-</u> - | | | | - | | - | N.D. | - | | | | | - | | - | 1 | | 7 (深度0- 0.5 n | <u> </u> | | <u> </u> | | -] | - | | 1 | - | - | - | _ | - | - | N.D. | N.D. | | | N.D. | N.D. | N.D. | 0.4 | N.D. | | | · | N.D. | | N.D. | N.D. | N.D. | N.D. | N D | - 24 | N.D. | ND | ŀ | | 7 (深度0- 0.5 n
7 (深度 0.5 n | n) 8 | /18. <u>4</u>
/18. 3 | N D | + | 1 D | -
N.D. | N.D. | N.D. | N.D. | - ND | | | - | - | _ | | | | - | | | _ | | | | - | - | N.D. | - | | _ | - | | - | | - TV.D. | r | | 7 (深度 I m | n) 8, | /18 1 | <u> </u> | | -
- | - · | | - N.D. | - N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | - 000 | | - I | | - N.D. | - | <u>-</u> | | <u>-</u> | - | | | | | | | ſ | | 7 (深度 1 m | | | | | J.D. | N.D. | N.D. | - K.D. | - N.D. | | - | - N.D. | - N.D. | <u>0.00</u> Z | _0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | - | N.D. | N.D. | N.D. | <u>N.D.</u> | N.D: | N.D. | N.D. | N.D. | Ͱ | | 7 (深度 1 m
7 (深度 2 m | | $\frac{18}{4}$ | | | - | - | =_ | | | - | - | - | | _ | | - | | _ | | - | | | _ | | - | - | | N.D. | | _ | | | | | - | <u> </u> | t | | 7 (深度 2 元 | | | | N | .D. | N.D. | N.D. | N.D. | ND | N.D. | N D | -
N.D. | - N.D. | - N.D. | | 0.3 | | | | N.D. | N.D. | | N.D. | | $\overline{}$ | N.D. | N.D. | 16 | N.D. | N.D. | İ | | 7 (深度 2 元 | ı) 8/ | /18 4 | | | = | - | _ | - | - | - | - i | - IV.D. | - N.D. | - N.D. | - | _ | | | | - | - | | | | - | | - | | - + | _ <u>-</u> } | | | | <u> </u> | | | 1 | | 7 (深度 3 m
7 (深度 3 m | | | | 1 | - | -
N.D. | | | | | | - | - | - | N.D. 0.3 | | | | N.D. | N.D. | | N.D. | —— | N.D. | N.D. | | 19 | N.D. | N.D. | ŀ | | 7 (深度 3 m | $\frac{1}{1}$ | 18 4 | N.D. | | .D. | N.D. | N.D.
- | N.D. | - | - | | | | - | | | - | | - | | | - | | | _ | _ | | | | ľ | | 7 (深度 3.90 m | 1) 8/ | 18 1 | _ | | - | - | | | | _ | | | - - | - | N.D. | -
N.D. | N.D. | ND I | N.D. | 0.003 | N D | 0.4 | N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. | - I | - | -
N.D. | -
N.D. | | | | | ĺ | | 7 (深度 3.90 m
7 (深度 3.90 m |) 8/ | 18 3 | N.D. | | | | N.D. - | - | - | | - | 0.003 | - | - V.4 | - N.D. | - IN.D. | - N.D. | - N.D. | - N.D. | | N.D. | N.D. | N.D. | N.D. | N.D.
- | <u>15</u> | <u>N</u> .D. | N.D. | ŀ | | 7 (保度 3.90 m
8 (深度0-0.05 m | 3/8/ | 18 4 | N D | | | -
N.D. | -
N.D. | -
N.D. | -
N.D. | | - | - | - | - | | | | | | - | | | - | - | - | _ | | N.D. | | | | _ | | | | | Ī | | 8(深度0- 0.5 m |) <u>8/</u> | 18 1 | _ | ^`` | | - | _N.D. | - IV.D. | - N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. | | - N.D. | - N.D. | - I | - N.D. | -
N.D. | | <u>-</u> - | | - | | | - | | | Ĺ | | 8 (深度0- 0.5 m |) 8/ | 18 4 | _ | | | - | | | | | - | | - | - | - | - | - N.D. | - IV.D. | - N.D. | - N.D. | - N.D. | <u>0.4</u>
- | N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. | N.D. | N.D. | N.D. | N.D. | _ N.D. | 21 | N.D.
- | N.D. | L | | 8 (深度 0.5 m
8 (深度 1 m | | | N.D. | | | N.D. | N.D. | N.D. | N.D. | | | | | N.D. | | - | =_ | - | | - | - | - | - | | - | - | _ | - | | - | | - | | - | | _ | ſ | | 8 (深度 1 m | | | | | | | | -
N.D. |
N.D. | -
N.D. | N.D. |
N.D. | N.D. | - N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | | 0.2 | | | N.D. | | N.D. | | N.D. | | N.D. | | N.D. | 20 | N.D. | N.D. | | | 8 (深度 1 m) |) 8/ | 18 4 | | | | - | - | - I | - IV.D. | - IV.D. | - IN.D. | - N.D. | - N.D. | - N.D. | - | | - | | - | _=- | - | _ | | - | | - | | -
N.D. | - | - <u>-</u> - | - | - | | | | - | Ė | | 8 (深度 2 m)
8 (深度 2 m) | | | ND | | | - | -
N.D. | | | | - | | - | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.2 | | | | | N.D. | | N.D. | | | | N.D. | N.D. | N.D. | N.D. | í | | o(殊度 2 m)
3(深度 2 m) | | | iz.D. | N. | | V.D. | N.D. - | | - | | - | - | - | - | - | - | | - | | - | - | - | - 1 | - | - | - | - | - | _ | | 3 (深度 3 m) | 8/1 | 18 1 | | 1- | | _ | | - | | | | - | - <u>-</u> -}- | | N.D. |
N.D. | N.D. | -
N.D. | N.D. | - N.D. | 0.004 | 0.4 | 0.1 | - N.D. | N.D. | N.D. | N.D. | N.D. | - I | - N.D. | - N.D | - N.D. | ~ | - | - | | _ | | 3 (深度 3 m)
3 (深度 3 m) | | | | N.I | | | | | N.D. | | N.D. | | N.D. | | - | - | - | - IX.D. | - I | - N.D. | - | - | <u>- U.1</u> | - N.D. | - N.D. | - N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | <u> 19</u> | N.D. | _N.D. | - | | (深度 3 m) | <u>/ [6/]</u> | 0 4 | | 1 - | - 1 | - 1 | - | - | - | - 1 | | - | | - | - | _ | _ | <u> </u> | | | | - | | | _ | | - | N.D. | - + | | | | _ | | | | - | # <u>計量結果一覧表</u> 発行日: 平 発行証明書番号: S 株式会社 日立プラントサー 本社:〒170-6034 東京都 分析技 称センタ 住所:〒271-0064 千葉県村 計量証明事業登録番号 千葉県知事を2003号 計量管理者 環境計量士 | 件名: 豊洲新市場予定地 | におけ | る盛土 | の土壌 | 調査委託 | : (その) | .) | 計量信 | 管理者 35
· | 境計量士 | | | | | |---|------------------|--|-------------|--------------|-------------------|---------------------|--------------|---------------|----------------|--------------------|--------------------|----------------|-----------|----------------|------------------|------------------|--------------|--------------|----------------|-----------------|----------|------------------|--------------|---------------|--|-----------------|---------------|------------------|--------------|-----------------|----------------|-----------------|-------------------|----------------|------------------------|--------------| | | \top | 9
#H | | | | | | | ., | | | , | | ± | 壌 溶 | 出量 | | | | | | | | | | | | <u> </u> | | | + | 堰 含 4 | F # . | | | | | 試料点名 | 探耳 | 日間方 | 四塩化
炭素 | 1,2-ジケ | ロー1,1~シク
ロエチレン | ローシス1,2~シ
クロロエデレ | ン 1,3-シクロン | 2 ジクロロ
メタン | テトラクロ
ロエチレン | 1,1,1-トリ
クロロエダン | 1,1,2-トリ
クロロエタン | トリクロロ
エチレン | ベンゼン | からか及びその化合物 | ス 六価クロル
カ 化合物 | ム
シアン
化合物 | 水銀及び | セレン及び | 対及び その化合物 | 砒素及び
その化合物 | ふつ素及び | F ほう素及び | シマジン | チオベン | チウラム | ポリ塩化 | | | | シアン | 水銀及び | セレン及び | 飲及び | 砒素及び | ふっ素及び | ほう素及び | | | | ชิ " | (mg/L) | (mg/L) | | | | 1 | 1 ' ' | (mg/L) | (mg/L) | (mg/L) | (mg/L) | 1 | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | でいる音報
(mg/L) | 1 | がそのに音報
(mg/L) | (mg/L) | カルブ
(mg/L) | (mg/L) | ピフェニル
(mg/L) | 化合物
(mg/L) | その化合物
(mg/kg) | | 化合物 | | その化合物 | | | | i . | | E 10 - 8 (深度 3.83 1
E 10 - 8 (深度 3.83 1 | | | N.D. | N.D. | N.D. | - N.D. | | - | - | - | - | - | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | | | N.D. | N.D. | N.D. | N.D. | (IIIg/L) | N.D. | N.D. | (mg/kg)
N.D. | N.D. | (mg/kg)
N.D. | (mg/kg)
18 | استستب | | N.D. | | E 10 - 8 (深度 3.83 r | n) 8/ | 18 4 | 1 - | N.D. | - IV.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | - - | - | - - | - | | _ | - | <u> </u> | - | - | - | <u>-</u> | - | -
N.D. | - | | | | - | - | _ | | | | E 10 - 9 (深度0- 0.05 r
E 10 - 9 (深度0- 0.5 r | n) 8/ | 7 2 | N.D. - | - | - | _ | - | | | _ | - | | _ | | - | N.D.
- | <u> </u> | - | - | - | - | - | - - | - | - | | E 10 - 9 (深度 0.5 r | | | N.D. -
N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | 0.002 | 0.2 | N.D. 16 | N.D. | N.D. | N.D. | | E 10 - 9 (深度 1 r
E 10 - 9 (深度 2 r | | | N.D. 0.002 | 0.4 | N.D. - - 17 | -
N.D. | _ -
N.D. | N.D. | | E 10 - 9 (深度 3 m | a) 8/1 | 7 2 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | - N.D.
N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | | N.D. | E 10 - 9 (深度 3.57 n
E 11 - 4 (深度0- 0.05 n | a) 8/1 | 7 2 | 1 | N.D. 0.003 | | N.D.
N.D. | N.D. N.D.
15 | | N.D.
N.D. | N.D. | | E11-4(深度0-0.5 n | 1) 8/2 | 0 1 | N.D.
- | N.D. -
N.D. | -
N.D. | N.D. | N.D. | 0.2 | -
N.D. | N.D. | N.D. | - N.D. | - N.D. | _ | - | _ | _ | | - | | | | | | E 11 - 4 (深度 0.5 n
E 11 - 4 (深度 1 n | 1) 8/2
1) 8/2 | | N.D. - | - | - | | - N.D. | - N.D. | - N.D. | -
U.Z | - N.D. | - IV.D. | - IN.D. | N.D. 15 | N.D. | _ <u>N.D.</u> | N.D. | | E 11 - 4 (深度 2 n | 1) 8/2 | 0 1 | N.D. N.D.
N.D. | N.D. | 0.002 | 0.3 | N.D. | | N.D. | N.D. | | E 11 - 4 (深度 2.99 n
E 11 - 5 (深度0- 0.05 n | 8/2 | 0 1 | N.D. 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | 17
20 | | N.D. | N.D.
N.D. | | E 11 - 5 (深度0- 0.5 n |) 8/2 | 0 1 | N.D. -
N.D. | N.D. | N.D. | -
N.D. | N.D. | 0.002 | 0.2 |
N.D. | N.D. | -
N.D. | -
N.D. | | - | | | | | - | | | | - | | E 11 - 5 (深度 0.5 m
E 11 - 5 (深度 1 m | | | N.D. | - | | _ | - N.D. | - N.D. | 0.002 | <u> </u> | _ N.D. | - IN.D. | - IN.D. | N.D. | N.D. | N.D. | N.D.
- | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | N.D. | | E11-5(深度 2 m | | | N.D. N.D.
N.D. | N.D.
N.D. | N.D.
N.D. | N.D.
N.D. | 0.3 | N.D. | | N.D. | N.D. | | E 11 - 5 (深度 3 m
E 11 - 5 (深度 3.90 m | | | N.D. | N.D. | N.D. | N.D. | | N.D. 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 17
N.D. | N.D. | N.D. | N.D. | | E 11 - 6 (深度0- 0.05 m |) 8/2 | 0 1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | | N.D. <u>N.D.</u> | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | | E 11 - 6 (深度0- 0.5 m
E 11 - 6 (深度 0.5 m | | | | - N.D. | -
N.D. | - | - | - | _ | | - | - | _ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | | | E11-6(深度 1 m |) 8/2 | | N.D. -
N.D. | -
N.D. | 0.002 | 0.3 | -
N.D. | -
N.D. | -
N.D. | N.D. | | | | - | - | | - | | | - | | | E 11 - 6 (深度 2 m
E 11 - 6 (深度 2.95 m |) 8/2 | | N.D. 0.002 | 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | | | | N.D. | | E 11 - 7 (深度0- 0.05 m |) 8/1 | 7 1 | N.D. | N.D. | N.D.
N.D. | N.D. 0.002 | 0.3 | N.D. | N.D. | | N.D. | | E 11 - 7 (深度0- 0.5 m
E 11 - 7 (深度 0.5 m | | | - N.D. | - N.D. | -
N.D. | -
N.D. | - | - | | | - | | - | N.D. | N.D. | N.D. | N.D. | N.D. | | 0.002 | 0.1 | N.D.
N.D. | N.D. | -
N.D. | | E 11 - 7 (深度 1 m | 8/1 | 7 1 | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. |
N.D. | N.D. |
N.D. | N.D. | N.D. | - N.D. | 0.002 | 0.3 | -
N.D. | N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | - N. D. | - N.D. | - N.D. | | | | | - | | | E 11 - 7 (深度 2 m
E 11 - 7 (深度 3 m | 8/1 | $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ | N.D. | N.D.
N.D. | N.D. 0.002 | 0.2 | N.D. N.D.
N.D. | 16
15 | | | N.D. | | E 11 - 7 (深度 3.89 m | 8/17 | 1 | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | N.D. | | 0.003 | 0.3 | N.D.
0.1 | N.D. | | N.D. | N.D. | N.D. | | E 11 - 8 (深度0- 0.05 m
E 11 - 8 (深度0- 0.5 m | 8/17 | 2 | N.D. | N.D. | N.D. | - | - | | - | - | _ | _ | | - | | - | | - N.D. | | - N.D. | N.D. | N.D.
- | N.D. | N.D. | 40 | N.D. | N.D. | N.D. | | E 11 - 8 (深度 0.5 m | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.003 | 0.2 | N.D. | <u>N.D.</u> | N.D. 18 | N.D. | N.D. | N.D. | | E 11 - 8 (深度 1 m
E 11 - 8 (深度 2 m | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | | 0.002 | 0.2 | N.D. 18 | N.D. | N.D. | N.D. | | E 11 - 8 (深度 3 m | 8/17 | 2 | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | | | | | N.D. | N.D. | N.D. | N.D. | N.D. | | 0.007
0.003 | N.D.
0.002 | 0.2 | N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | | | | | N.D. | | E 11 - 8 (深度 3.52 m
E 11 - 9 (深度0- 0.05 m | 8/17 | 2 | N.D. | N.D. | N.D. | | | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | | | | N.D. | 0.003 | 0.002 | 0.2 | | N.D. | | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D.
N.D. | | E 11 - 9(深度0- 0.5 m | 8/17 | 2 | - | - | _ | N.D. | | | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | -
N.D. | N.D. | - N.D. | N.D. | N.D. | -
N.D. | 0.2 |
N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | - N.D. | -
N.D. | N.D. | - N.D. | -
N.D. | | | - | | | E 11 - 9 (深度 0.5 m
E 11 - 9 (深度 1 m) | 8/17 | $\frac{2}{3}$ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | | | N.D. | - | | _ | | - | | | | - | - | | - | | | - I | - IV.D. | - N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | И.D. | | E 11 - 9 (深度 2 m) | 8/17 | 12 f | N.D. | N.D. | N.D. | N.D. | N.D | N.D. | | | | | N.D. | N.D. | N.D. | | N.D. | | | 0.003
0.002 | | | N.D. | | N.D. | N.D. | N.D. | | N.D. | N.D. | | N.D. | | | | N.D. | | E 11 - 9 (深度 3 m)
E 11 - 9 (深度 3.52 m) | 8/17 | 2 | N.D. 0.3 | N.D. N.D.
N.D. | | N.D. | | E 12 - 4(深度0- 0.05 m) | 8/20 | 11 | N.D. | N.D. | N.D. | N.D. | | | N.D. | | | | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.4 | N.D. | N.D. | N.D.
- | N.D. 24 | N.D. | | N.D. | | E 12 - 4 (深度0- 0.5 m)
E 12 - 4 (深度 0.5 m) | 8/20 | 1 | -
N.D | -
N.D. | N.D. | - | - | N.D. | N.D. | - | | - | | N.D. | N.D. | | N.D. | | N.D. | 0.002 | 0.2 | N.D. | N.D. | | N.D. | | | N.D. | | E 12 - 4 (深度 I m) | 8/20 | 1 | N.D. | | | N.D. | N.D. | N.D. | -
N.D. | N.D. | -
N.D. | N.D. | 0.003 | 0.3 |
N.D. | - N.D. | N.D. | -
N.D. | -
N.D. | N.D. | N.D. | -
N.D. | –
N.D. | - N.D | N.D. | -
16 | -
N.D. | -
N.D. | N.D. | | E 12 - 4 (深度 2 m) E 12 - 4 (深度 3 m) | 8/20 | | N.D. | N.D. | N.D. | N.D. | | | N.D. | N.D. | | N.D. 0.004 | 0.3 | 0.1 | N.D. | N.D. | | E 12 - 4 (深度 3.62 m) | 8/20 | 1 | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | | | 0.3 | | N.D. | | | N.D.
N.D. | | N.D. | | N.D. | | | | | N.D. | N.D. | | E 12 - 5 (深度0- 0.05 m)
E 12 - 5 (深度0- 0.5 m) | 8/20
8/20 | $\begin{vmatrix} 4 \\ 1 \end{vmatrix}$ | N.D. | | N.D. | 1 | - | |
- | - 1 | - | - | - | - | | - | - | - | - | - | | _ | | | - | - N.D. | N.D. | N.D. | | E 12 - 5 (深度 0.5 m) | 8/20 | 4 | | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | ט.א. – | 0.002 | 0.002
- | 0.3 | N.D. | N.D.
- | N.D. | N.D. | | E 12 - 5 (深度 1 m) E 12 - 5 (深度 1 m) | | | -
N.D. | N.D. | -
N.D. | -
N.D. | N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. 0.4 | N.D. | | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 20 | | N.D. | | | E 12 - 5 (深度 2 m) | 8/20 | 1 | - 1 | _ | - | | - | - | - | - | - | _ | - | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | 0.3 | N.D. | -
N.D. | -
N.D. | N.D. | -
N.D. | N.D. | -
N.D. |
N.D. | N.D. | -
N.D. | N.D. | -
15 | -
N.D. | -
N.D. | N.D. | | E 12 - 5 (深度 2 m) E 12 - 5 (深度 3 m) | 8/20 | 4
1 | N.D. -
N.D. | - N.D. | _ | - | - | | - | | - | - | | - | | - | | | - | | - | | - | - | - N.D. | | 12-5 (深度 3 m) | 8/20 | | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | | N.D. | | N.D. | - | N.D. | N.D. | N.D. (| 0.003 | 0.3 | N.D. 17 | N.D. | N.D. | N.D. | | E 12 - 5 (深度 3.61 m) E 12 - 5 (深度 3.61 m) | 8/20 | 4 | -
N.D. | -
N.D. | -
N.D. | N.D. | N.D. | -
N.D. | - I | N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. (| 0.002 | 0.3 | N.D. | | N.D. | N.D. | 18 | N.D. | | N.D. | | 12 - 6(深度0- 0.05 m) | 8/20 | 4 | N.D. | N.D. | - | | - | | - | | | _ | | - | - | - | | | | - | | _ | | - | | | = | | 12-6 (深度0- 0.5 m)
12-6 (深度 0.5 m) | 8/20 | 4 | -
N.D. | -
N.D. | N.D. | N.D. | N.D. | -
N.D. | - I | - N.D. 1 | - N.D. | -
N.D. | –
N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | 0.3 | N.D. | N.D. | | N.D. | | | | | N.D. | | | 16 | N.D. | N.D. | N.D. | | | | | | | | | | | | | | | וייטיי | | <u> </u> | | 5/7 | | | | | | 1 | - | | - | | - | | | - 1 | | - 1 | | | | 発行日: 平 発行証明書番号: S: 株式会社 日立プラントサー 本社:〒170-6034 東京都島 分 析 技 術 センタ 住所:〒271-0064 千葉県村 計量証明事業登録番号 千葉県知事登2-第503号 計量管理者 環境計量士 🕯 <u>計量結果一覧表</u> | 件名: 豐洲新市場予定地は | こおけ | る盛土 | の土壌 | 两查委託 | (その1 |) | • | | | | | | | | | • | | | | | | | | | _ | | | | | | 54TH A | | | | | |---|------------------|-------------------|--------------|-------------|-----------|-----------|-------------|--------------|-----------|--------------------|--------------|--------------|--------------|----------------|----------------|----------------|----------------|-----------------|------------------|----------------|-------------------|-----------|--------------|--------------|-----------|---------------|--------------|-----------------|--------------|------------|---------------|----------------|-----------------|----------------|------------------------| | | | 分
新計
表別 | 网络化 | 1,2-2'70 | 1 1-2200 | 277 0-2 | 1.3-5'70 | ジクロロ | テトラクロ | 1 | 1 | T.,,,, | T | 1 | 壌 溶 | | T | | 1 . | | , | 1 | | | · | Т | | | | | 土 | 集含 7 | 重量 | | | | 試料点名 | 採取 | 出版が | 炭 素 | ロエタン | ロエチレン | クロロエチレン | 2 ロプロペン | メタン | | 1,1,1-トリ
クロロエタン | | | ベンゼン | オーミタム及びその化合物 | ス 六価クロル
化合物 | | 水銀及びその化合物 | セレン及び
りその化合4 | グ 鉛及び
め その化合物 | 砒素及び
その化合物 | トラース その化合物 | | シマジン | チオペン
カルブ | チウラム | ポリ塩化
ピフェニル | | かミウム及び
その化合物 | 大価クロム
化合物 | シアン
化合物 | 水銀及び
その化合物 | セレン及び
その化合物 | 鉛及び
けその化合物 | 砒素及び
すその化合物 | ふっ素及び ほう男
その化合物 その(| | E 12 - 6 (柒度 1 m | ı) 8/2 | 20 1 | (mg/L) (mg/L)
N.D. | (mg/L)
N.D. | (mg/L)
N.D. | (mg/L)
N.D. | (mg/L) | | | (mg/L) (mg/kg) | | | 4 | | (mg/kg) | | (mg/kg) (mg | | E 12 - 6 (深度 1 m | 1) 8/2 | 20 4 | N.D. - IN.D. | N.D. | - N.D. | N.D. | N.D. | N.D. | N.D. | 0.3 | N.D. | N.D.
- | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D.
- | N.D.
- | N.D. | N.D. N. | | E 12 - 6 (深度 2 m
E 12 - 6 (深度 2 m | i) 8/2
i) 8/2 | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | -
N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.005 | 0.2 | N.D. 15 | N.D. | N.D. N. | | E 12 - 6 (深度 3 m
E 12 - 6 (深度 3 m |) 8/2 | 20 1 | _ | - | - | - | _ | - | - | | - | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. 19 | N.D. | N.D. N. | | E 12 - 6 (深度 3 m
E 12 - 6 (深度 3.66 m | () 8/2
() 8/2 | | N.D.
- | N.D. <u>N.D.</u> | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.3 | -
N.D. | N.D. | -
N.D. | -
N.D. | N.D. | N.D. | -
N.D. | -
N.D. | - N.D. | - N.D. | | -
17 | - | | | E 12 - 6 (深度 3.66 m
E 12 - 7 (深度0- 0.05 m | | | 1 | N.D. - | - | - | - | - | - N.D. | - IV.D. | - | - N.D. | - N.D. | - IV.D. | - IN.D. | - N.D. | N.D.
 - | - 18.D. | - N.D. | N.D. | N.D. | N.D. | <u> </u> | N.D. | N.D. N. | | E 12 - 7 (深度0- 0.05 m | | | N.D. <u> </u> | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. | -
N.D. | N.D. | -
N.D. | -
N.D. | N.D. | N.D. | - N.D. N. | | E 12 - 7 (深度 0.5 m
E 12 - 7 (深度 1 m | - | | N.D. - | | | | - | - | | | | - | _ | | - | - | | _ | | - | - | - N.D. | - N.D. | | | E 12 - 7 (深度 2 m |) 8/1 | 7 2 | N.D. 0.003
N.D. | $\frac{0.1}{0.3}$ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. N.
N.D. N. | | E 12 - 7 (深度 3 m
E 12 - 7 (深度 3.79 m | | $\frac{7 2}{7 2}$ | | N.D. 0.3 | N.D. 16 | N.D. | N.D. N. | | E 12 - 8 (深度0- 0.05 m | 8/1 | 7 1 | | N.D. - N.D. | 1V.D. | N.D.
 - | N.D. | N.D. | N.D. | N.D. | 0.3 | N.D.
- | _ N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D.
- | N.D. | N.D. | N.D. | 22 | N.D. | N.D. N. | | E 12 - 8 (深度0- 0.5 m
E 12 - 8 (深度 0.5 m | | | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. |
N.D. | -
N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | N.D. | 0.2 | N.D. 15 | N.D. | N.D. N. | | E 12 - 8 (深度 1 m) | 8/1 | | N.D. 0.003 | 0.002 | 0.3 | N.D. N.I | | E 12 - 8 (深度 3 m) |) 8/1
) 8/1 | | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D.
N.D. | N.D. 0.003 | N.D. | 0.1 | N.D. | N.D.
N.D. | N.D.
N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | 18
19 | N.D. | N.D. N.I
N.D. N.I | | E 12 - 8 (深度 3.92 m)
E 12 - 9 (深度0- 0.05 m) | | | N.D. | 0.008 | 0.2 | N.D. 61 | N.D. | N.D. N.I | | E 12 - 9 (深度0- 0.5 m) | 8/2 | 0 1 | - | - | N.D. | N.D. | N.D. | N.D.
- | N.D.
- | N.D.
- | N.D. | N.D.
- | N.D.
- | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. |
N.D. | -
N.D. |
N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | -
15 |
N.D. |
N.D. N.I | | E 12 - 9 (深度 0.5 m)
E 12 - 9 (深度 I m) | 8/2 | | N.D. | N.D. | N.D.
- | N.D. -
N.D. | -
M.D. | - N.D. | -
N.D. | -
N.D. | | - | - | | | _ | | _ | | | - | - | _ | | = | | | | E 12 - 9 (深度 1 m) | 8/2 | 0 4 | N.D. N.D.
- | _ N.D.
 | N.D. | N.D.
- | N.D.
- | 0.3 | N.D. | N.D.
- | N.D.
- | N.D.
- | <u>N.D.</u> | N.D.
- | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | 17 | N.D. | N.D. N.I | | E 12 - 9 (深度 2 m)
E 12 - 9 (深度 2 m) | | | -
N.D. |
N.D. | -
N.D. |
N.D. | N.D. |
N.D. | -
N.D. | - N.D. | N.D. | -
N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.009 | 0.2 | 0.1 | N.D. 30 | N.D. | N.D. N.I | | E 12 - 9 (深度 3 m) | 8/20 | 0 1 | - | | - | _ | - | - | - | - | - | | 1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.006 | 0.2 | N.D. 25 | N.D. | N.D. N.I | | E 12 - 9 (深度 3 m)
E 12 - 9 (深度 3.81 m) | | 0 4 | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. |
N.D. | N.D. | -
N.D. | 0.003 | 0.3 | -
N.D. | N.D. |
N.D. |
N.D. |
N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. | –
N.D. | N.D. | | N.D. | N.D. N.I | | 42-4-4 | 8/20 | | N.D. - | 1 | | | - | - | - | - | - | - | | | - | | | | - N.D. | N.D. | - N.D. | | - N.D. | N.D. N.I | | E 13 - 1 (深度0- 0.5 m) | 8/2 | -1 | - N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. |
N.D. | -
N.D. | N.D. |
N.D. | 0.2 | N.D. |
N.D. | -
N.D. |
N.D. | N.D. | - |
N.D. | N.D. | -
N.D. | - N.D. | - N.D. |
15 | -
N.D. |
N.D. N.I | | E <u>13 - 1(深度0- 0.5 m)</u>
E 13 - 1(深度 0.5 m) | -7, | 2 | N.D. | -
N.D. | -
N.D. | -
N.D. |
N.D. | -
N.D. | N.D. | -
N.D. | -
N.D. | - N.D. | -
N.D. | - | | - | | | - | - | | | | | | | N.D. | - | | | | | - | - | | | E 13 - 1 (深度 1 m) | 8/21 | 2 | N.D. | N.D. | N.D.
N.D. | N.D. 0.002 | 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | | -
N.D. | N.D. |
N.D. |
N.D. |
N.D. | -
18 |
N.D. |
N.D. N.I | | E 13 - 1 (深度 1 m)
E 13 - 1 (深度 2 m) | | |
N.D. | N.D. |
N.D. | -
N.D. |
N.D. | -
N.D. | -
N.D. | - N.D. | - N.D. |
N.D. | N.D. | -
N.D. | -
N.D. | N.D. |
N.D. | N.D. | -
N.D. | 0.006 | 0.4 | -
N.D. | –
N.D. | N.D. | -
N.D. | -
N.D. | N.D. | - | - N.D. | - N.D. | | | - | | - - | | E 13 - 1 (深度 2 m) | 8/21 | 4 | - | - | | - | | - | | - | | - | _ | - | - | - | | _ | - | - | - | - IV.D. | - IN.D. | - N.D. | - N.D. | - N.D. | N.D. | N.D.
- | N.D.
- | N.D.
- | N.D.
 | N.D. | <u>19</u> | N.D.
- | N.D. N.I | | E 13 - 1 (深度 3 m) | | 4 | N.D. | N.D.
- | N.D.
- | N.D.
- | N.D. | N.D.
 - | N.D. 0.003 | <u>0.4</u>
- | N.D. | N.D. | N.D. | N.D.
- | N.D. |
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 16 | N.D. | N.D. N.I | | E 13 - 1 (深度 3.40 m)
E 13 - 1 (深度 3.40 m) | 8/21 | 2 | N.D. | | | N.D. | | | | N.D. | N.D. | | | N.D. | | | | | - | | N.D. | N.D. | N.D. | N.D. | | | N.D. 'N.I | | E 13 - 2 (深度0- 0.05 m) | 8/20 | 1 | N.D. | N.D. | N.D. | N.D. | | N.D. | | | N.D. | N.D. | N.D. | - | - | - | | - | _ | - | | - | | - | - | - <u>-</u> - | N.D. | | - | - | | | - | | - - | | E 13 - 2 (深度0- 0.5 m) E 13 - 2 (深度
0.5 m) | 8/20 | | N.D. | -
N.D. | ND | -
N.D. | -
N.D. | N.D. | -
N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | | 0.3 | N.D. | | N.D. | | | N.D. | N.D. | N.D. | | | N.D. | | | N.D. N.I | | 3 - 2 (深度 1 m) | 8/20 | 1 | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | | | N.D. | | N.D. | | N.D. | N.D. |
N.D. | N.D. | -
N.D. | - 19 | N.D. | N.D. N.D. | | E 13 - 2 (深度 2 m) E 13 - 2 (深度 3 m) | 8/20 | 1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002
0.004 | 0.4 | N.D. | N.D. | | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | N.D. N.E | | E 13 - 2 (深度 3.84 m)
E 13 - 3 (深度0- 0.05 m) | 8/20 | 1 | N.D. | N.D. | N.D. | 0.2 | 0.1 | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | 22 | N.D. | N.D. N.D. | | 13-3(深度0-0.5 m) | 8/20 | 1 | - | - | N.D. | - 1 | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | -
N.D. | N.D. |
N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. |
N.D. | N.D. | N.D. | -
N.D. | -
N.D. | N.D. | -
N.D. | N.D. | - N D | ND | 16 |
N.D. |
N.D. N.D | | 13-3 (深度 0.5 m)
13-3 (深度 1 m) | 8/20 | 4 | N.D. - | - | | - | - | _ | - | _ | | - (| | - | | - | | _ | | - | - | | | | | 13-3 (深度 1 m) | 8/20 | 4 | N.D. | | N.D. | N.D. | N.D. | N.D. | | N.D. | | N.D. | -
N.D. | N.D. | N.D. | | - | - | N.D. | 0.002 | 0.4 | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D.
- | N.D. | 17 | N.D. | N.D. N.D | | 13-3 (深度 2 m)
13-3 (深度 2 m) | 8/20
8/20 | $\frac{1}{4}$ | N.D. | N.D. | N.D. |
N.D. | - N.D. | -
N.D. | - | - | | - | -
N.D. | N.D. 0.4 | 0.1 | N.D. _16 | | N.D. N.D | | 13~3 (深度 3 m) | 8/20 | 1 | | - | - | - | - | - | | - | - | | - | N.D. | N.D. | N.D. | | | | | 0.4 | N.D. | | N.D.
N.D. |
N.D. | N.D. | N.D. N.D | | 13-3 (深度 3 m)
13-3 (深度 3.92 m) | 8/20 | 1 | - 1 | N.D. -
N.D. | –
N.D. | - ·
N.D. | -
N.D. | N.D. | - N.D | 0.008 | 0.1 |
N.D. | - I | –
N.D. | –
N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. | | -
N.D. | - 1 | | N.D. | | | 13 - 3 (深度 3.92 m)
13 - 4 (深度O- 0.05 m) | 8/20 | 4 | N.D. | N.D. | N.D. | | | N.D. | | | | N.D. | N.D. | - | - | - | - | - | | | - | - | - | | | - | = | - | | | - | - | | - | | | 13 - 4 (深度0- 0.5 m) | 8/21 | 2 | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D.
- | N.D. -
N.D. | N.D. | 0.003 | 0.4 | -
N.D. | N.D. | -
N.D. | N.D. | -
N.D. | - | -
N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. | -
15 | -
N.D. |
N.D. N.D | | 13 - 4 (深度0- 0.5 m)
13 - 4 (深度 0.5 m) | 8/21 | 4 | - N.D | - N.D | -
N.D. | N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. | N.D. | -
N.D. | - | - | | - | - | - | - | - | - | - | | - | - | N.D. | - | - | - | - | - | | - N.D. | | | 13 - 4 (深度 1 m) | 8/21 | 2 | N.D. | N.D. | N.D. | | N.D. | N.D. | | | 0.3 | N.D. | N.D. | N.D. | N.D. | -
N.D. | - | N.D. | N.D. | N.D. | N.D. | N.D. | -
19 | N.D. |
N.D. N.D | | 13 - 4 (深度 1 m) 13 - 4 (深度 2 m) | 8/21
8/21 | 2 | - N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. | -
N.D. | N.D. | N.D. | -
N.D. | N.D. | - N.D. | -
N.D. | -
N.D. | -
N.D. | - N.D | -
N.D. | ND | 0.002 | | -
N.D. | - | - | | –
N.D. | N.D. | -] | - | N.D. | | -
N.D. | - | | | | 13 - 4 (深度 2 m) | | | | - N.D. | N.D. | | N.D. | - N.D. | - N.D. | - N.D. | L.D. | - IV.D. | | | N.D. N.D | # 発行日: 平 発行証明書番号: S' 株式会社 日立プラントサー 本社:〒170-6034 東京都 分析技術センタ 住所:〒271-0064 千葉県村 計量証明事業登録番号 千 計量結果一覧表 | 件名: 豊洲新市場予定地にお | | | | | | | | | | | | | | | | | | : | | | AI AL P | は 理者 は | K-7501 35.3 | | | | | | | | | | | | | |--|------------------------------|----------------------|----------------------|----------------------|----------------------|------------------------|----------------------|----------------|----------------------|--------------------|----------------------|---------------|------------------|------------------|-------------------|------------------|----------------|-------------------|------------------|--------------------|---------------|----------------|----------------|----------------|----------------|----------------|-----------------|---------------|---------------|----------------|---------------|---------------|---------------|----------------|---------------| | | 分析 | # | 1 | 1 | | | | | | · | | | 土 | 壤 溶 | 出量 | | | | | | | *** | <u> </u> | | | | | | | 土 | 収 含 4 | 有量 | | | | | 試料点名 | 果取日 報道
第2
みる | た 四塩化
大 炭素 | ロエタン | ロ 1,1-シウロ
ロエチレン | | 1,3-シクロ | | テトラクロ
ロエチレン | | 1,1,2-トリ
クロロエタン | トリクロロ
エチレン | ベンゼン | か*:ウム及び
その化合を | ド 六価クロル
7 化合物 | ン
シアン
化合物 | 水銀及び
その化合物 | セレン及び
その化合物 | が
鉛及び
その化合物 | 砒素及び
その化合 | 、 ふっ素及び
カ その化合物 | | | チオベン
カルブ | チウラム | ポリ塩化 | | かざかA及び
その化合物 | | シアン化合物 | 水銀及びその化合物 | セレン及び | 鉛及び
その化合物 | 砒素及び
その化合物 | ふっ素及び
その化合物 | ほう素及びその化合 | | E 13 - 4 (深度 3 m) | لا
9 /21 2 | (mg/L)
N.D. | (mg/L)
N.D. | | (mg/L) | (mg/L) | | | | | (mg/L) | (mg/L) | | (mg/L) | (mg/L) | (mg/L) | | | | (mg/L) (mg/kg) | E 13 - 4 (深度 3 m) | | | - N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N:D. | N.D. | 0.2 | N.D. N.D.
- | | E 13 - 4 (深度 3.26 m)
E 13 - 4 (深度 3.26 m) | | N.D. 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | _ | N.D. | N.D. | N.D. | N.D. | N.D. | 16 | N.D. | N.D. | N.D. | | E 13 - 5 (深度0- 0.05 m) | 3/20 1 | N.D. - | | - | - - | - | - | - - | - - | - | - | - | - | - | N.D. | <u>-</u> | - | - | - | <u> </u> | - | - | | <u>-</u> | | E 13 - 5 (深度0- 0.5 m)
E 13 - 5 (深度 0.5 m) | | N.D. | -
N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.2 | N.D. 24 | N.D. | N.D. | N.D. | | E 13 - 5 (深度 1 m) | 3/20 1 | N.D. 0.3 | N.D. 16 | N.D. | N.D. | N.D. | | | 3/20 1
3/20 1 | N.D. N.D.
N.D. | N.D. 0.006 | 0.1 | N.D. | E 13 - 5 (深度 3.86 m) 1 | 3/20 1 | N.D. 0.010 | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | 23
N.D. | N.D. | N.D.
N.D. | N.D. | | E 13 - 6 (深度0- 0.05 m) { E 13 - 6 (深度0- 0.5 m) { | | N.D.
- | N.D. -
N.D. | -
N.D. | 0.002 | - 0.2 | - 0.1 | -
N.D. | - N.D. | -
N.D. | -
ND | - | - | - | _ | - | - | - | | - | _ | | E 13 - 6 (深度 0.5 m) 8 | /20 4 | | N.D. | - | - N.D. | - IV.D. | N.D.
 - | 1V.D. | <u>0.002</u> | 0.2 | 0.1 | N.D.
- | N.D | - N.D. | N.D. | N.D. | N.D.
- | N.D.
- | N.D. | N.D.
- | N.D.
- | 20 | N.D. | N.D.
- | N.D.
- | | 141.04 2 22/ | /20 1
/20 4 | N.D. -
N.D. | N.D. 0.003 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | 17 | N.D. | N.D. | N.D. | | E 13 - 6 (深度 2 m) 8
E 13 - 6 (深度 2 m) 8 | /20 1 | | | _ | - | | - | - | | - | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.005 | 1 | N.D. 16 | N.D. | N.D. | N.D. | | E 13 - 6 (深度 3 m) 8 | /20 <u>4</u>
/20 <u>1</u> | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D.
- | N.D. 0.003 | 0.4 | -
N.D. | -
N.D. | N.D. | N.D. | N.D. | -
N.D. |
N.D. | -
N.D. | -
N.D. | N.D. | N.D. | -
17 | N.D. | -
N.D. | N.D. | | E 13 - 6 (深度 3 m) 8
E 13 - 6 (深度 3.98 m) 8 | /20 4
/20 1 | N.D. - | | - | - | - | - | - | | | | - | - | - | - | - | - | | - | _ | | - K.D. | - IV.D. | | | E 13 - 6 (深度 3.98 m) 8 | /20 4 | N.D. -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | 0.004 | 0.2 | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | <u>N.D.</u> | N.D. | E 13 - 7 (深度0- 0.05 m) 8
E 13 - 7 (深度0- 0.5 m) 8 | | N.D. | N.D. | N.D. | N.D. | <u>N.</u> D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | - | -
N.D. | - | - | - | - | - | - | | - | - | - | - | | | - | | | _ | - | | • | | E 13 - 7 (深度 0.5 m) 8 | /20 1 | N.D. N.D.
- | N.D. | N.D. | N.D.
- | N.D. | 0.002 | 0.3 | 0.1
- | N.D.
- | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | <u>16</u> | N.D. | N.D. | <u>N.D.</u> | | E 13 - 7 (深度 1 m) 8
E 13 - 7 (深度 2 m) 8 | /20 1
/20 1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | 0.003 | 0.3 | N.D.
N.D. | N.D.
N.D. | N.D.
N.D. | N.D. 17 | N.D. | N.D. | N.D. | | E 13 - 7 (深度 3 m) 8 | /20 1 | N.D. | 0.002 | | N.D. N.D.
N.D. | 20
N.D. | N.D.
N.D. | N.D. | N.D. | | <u>E 13 - 7 (深度 3.79 m) 8</u>
<u>E 13 - 8 (深度0- 0.05 m)</u> 8 | $\frac{/20}{/20}$ 1 | N.D. | N.D. | N.D. | | N.D. · | N.D.
N.D. | N.D. N.D.
- | N.D. | 0.2 | 0.1 | N.D. 35 | N.D. | N.D. | N.D. | | E 13 - 8 (深度0- 0.5 m) 8
E 13 - 8 (深度 0.5 m) 8 | | | - · | -
N.D. | | - | - | . – | | - | | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.3 | N.D. | N.D. | 19 | N.D. | N.D. | N.D. | | E 13 - 8 (深度 1 m) 8 | /20 1 | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | 0.3 | -
N.D. | -
N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. |
N.D. | -
N.D. |
16 |
N.D. | N.D. |
N.D. | | | /20 4
/20 1 | N.D. - | - | | - | _ | | - | - | | - | _ | | _ | - | _ | - | _ | _ | - | | _ | | | | E 13 - 8 (深度 2 m) 8 | 20 4 | N.D. | N.D. | N.D. | | N.D. N.D.
- | <u>N</u> .D.
− | N.D. | N.D. | <u>N.D.</u>
– | 0.009 | 0.7 | 0.1 | N.D. | N.Đ.
- | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | 30 | N.D.
- | N.D. | N.D. | | | /20 1
/20 4 | -
N.D. | -
N.D. |
N.D. |
N.D. | - N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. |
–
N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.007 | 0.1 | N.D. 17 | N.D. | N.D. | N.D. | | E 13 - 8 (深度 3.72 m) 8. | 20 1 | - | | - | - | - | - | | - | | | - | N.D. 0.5 | 0.1 | N.D. 30 | N.D | N.D. | N.D. | | E 13 - 8 (深度 3.72 m) 8,
E 13 - 9 (深度0- 0.05 m) 8, | | N.D. | N.D. | | | N.D. | N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | | - | - | - | | - | _ | _ | | | | - | - | | | | | - | | | _ | - | | | E 13 - 9 (深度0- 0.5 m) 8,
E 13 - 9 (深度 0.5 m) 8, | | - N.D. | - N.D. | _ | - | | - | | - | - | - | _ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.3 | 0.1 | N.D. 28 | N.D. | N.D. | N.D. | | E 13 - 9 (深度 1 m) 8 | 20 1 | - 1 | - | - | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | - N.D. | N.D. | N.D. | 0.003 | 0.2 | N.D. | - N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | - 18 | N.D. | –
N.D. | N.D. | | E 13 - 9 (深度 1 m) 8,
E 13 - 9 (深度 2 m) 8, | 20 4 | N.D. - | - | - | | - | - | - | | | - | | - | _ | - | - | - | - | | | - | | | _ | | E 13 - 9 (深度 2 m) 8/ | 20 4 | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D. | <u>0.006</u> | 0.3 | 0.1 | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D.
- | N.D. | N.D.
- | <u>N.D.</u> | <u>29</u> | N.D. | N.D. | N.D. | | E 13 - 9 (深度 3 m) 8/
E 13 - 9 (深度 3 m) 8/ | 20 4 | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | | -
N.D. | | - 7 | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.009 | 0.3 | 0.1 | N.D. 20 | N.D. | N.D. | N.D. | | E 13 - 9 (深度 3.80 m) 8/
E 13 - 9 (深度 3.80 m) 8/ | 20 1 | - 1 | - | - | | 1 | - | | - | . – | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.008 | 0.3 | N.D. 19 |
N.D. | N.D. | N.D. | | <u>定量下限値</u> | | | 0.0004 | | N.D.
0.004 | | | N.D.
0.001 | | N.D.
0.0006 | | N.D.
0.001 | 0.002 | 0.01 | 0.1 | 0.0005 | 0.002 | 0.002 | 0.002 | 0.1 | 0.1 | 0.0003 | 0.002 | 0.0006 | 0.0005 | 0.1 | -
15 | | | 1.5 | -
15 | -
15 | -
15 | 400 | 400 | | 指定基準値 | | 0.002 | 0.004 | | | 0.002 | 0.02 | 0.01 | | 0.006 | 0.03 | 0.01 | 0.01 | | 検出されないこと | 0.0005 | 0.01 | 0.01 | 0.01 | 0.8 | 1 | 0.003 | 0.02 | | | 検出されないこと | 150 | 250 | 50 | 15 | 150 | 150 | 150 | 4000 | 400
4000 | |
 | 1 | JIS K
0125 K
0102 | JIS K
0102 | JIS K
0102 | 昭和46年
最告59号 | JIS K
0102 | JIS K
0102 | JIS K
0102 | 昭和46年
森告59号 | JIS K
0102 | 昭和46年
環告59号 | 昭和46年
遺告59号 | 昭和46年
慶告59号 | 昭和46年 | 昭和49年 | JIS K
0102 | JIS K
0102 | JIS K
0102 | 昭和46年
環告59号 | JIS K
0102 | JIS K
0102 | JIS K
0102 | JIS K
0102 | JIS K
0102 | | | ┦ | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 55.4 | 65.2.1 | 38.3 | 付表1 | 67.4 | 54.4 | 61.4 | 付表6 | 47.3 | 付表5第1 | 付表5第1 | 付表4 | 付表3 | 付表1 | 55.3 | 65.2.1 | 38.3 | 付表1 | 67.2 | 54.3 | 61.2 | 34.1 | 47.3 | | ㈱日立プラントサービス
計量方法 その2 | 2 | JIS K
0125
5.1 | JIS K
0125
5.1 | JIS K
0125
5.1 | JIS K
0125
5.1 | JIS K .
0125
5.1 | JIS K
0125
5.1 | JIS K
0125 | JIS K
0125
5.1 | JIS K
0125 | JIS K
0125
5.1 | JIS K
0125 | JIS K
0102 | JIS K
0102 | | 昭和46年
森告59号 | JIS K
0102 | JIS K
0102 | JIS K
0102 | 昭和46年 聚告59号 | 0102 | 環告59号 | 昭和46年
葉告59号 | 環告59号 | 糜告59号 | 森告64号 | JIS K
0102 | JIS K
0102 | 0102 | 昭和46年
聚告59号 | JIS K
0102 | JIS K
0102 | JIS K
0102 | JIS K
0102 | JIS K
0102 | | | | JIS K 5.1
JIS K | 55.4 | 65.2.1 | 38.3 | 付表1 | 67.4 | 54.4 | 61.4 | 付表6 | 47.3 | 付表5第1 | 17表5第1 | 何委4 | 付表3
———— | 付扱1
 | 55.3 | 65.2.1 | 38.3 | 付表1 | 67.2 | 54.3 | 61,2 | 34.1 | 47.3 | | 計量方法 | 3 | 0125
5.2 | 0125
5.2 | 0125
5.2 | | 0125
5.2 | | — | | | | | | | | | | | · | | | | | | | | | | | 習和産業(株)
計量方法 | 4 | JIS K
0125 | JIS K
0125 | JIS K
0125
5.2 | JIS K
0125 | | | | | | | | | | | | | 昭和49年
菜告64号 | | | | | | | | | | | | | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 0125
5.2 | 0125
5.2 | 0125
5.2 | 0125
5.2 | 0125
5.2 | | | | | | | | | | | j | | | 付表1 | | | | | | | | | | # 度計量証明 S120044 号 証明書番号 第 受付番号第 12211500-F号 発行年月日 平成24年9月18日 東京都中央卸売市場 新市場整備部 様 株式会社日立プラ 本社 〒170-6034 東京都豊島区東池 分析技術センタ 于葉県松戸市 電話 FAX 047-367-6921 計量証明事業登録番号 千葉県知事登録 第503. 呈 計量管理者名 環境計量士 下記試料に対する計量の結果を次のとおり証明致します。 豊洲新市場予定地における盛土の土壌調査委託(その1) 1. 件 名 平成24年8月17日~8月22日 2. 採取年月日 東京都江東区豊洲六丁目地内 3. 採取場所 ボーリング掘削 (土壌コア採取):清 水 建 設 株 式 会 社 4.採取者 :株式会社日立プラントサービス 土壌試料分取及び運搬 土壌(溶出量および含有量) 5. 計量の対象 溶出量:「土壌の汚染に係る環境基準について(平成3年8月環告第46号)付表」 6. 検液調整方法 含有量:「土壤汚染対策法施行規則(平成15年3月環告第19号)付表」 #### 7. 分析機関 | 分析 | 斤機関名称 | ㈱日立プラントサービス | ㈱湘南分析センター | 習和産業㈱ | |----|--------------|-------------|-----------|-------------------| | | 証明事業
录番号 | 千葉県 第 503 号 | 神奈川県 第3号 | 千葉県 第 540 号 | | | 第1種特定 | 全11項目 | 全11項目 | 全11項目 | | 担 | 有害物質 | (検液の作成含む) | (検液の作成含む) | (検液の作成含む) | | 当 | 第2種特定 | 全9項目 | | | | 項 | 有害物質 | (検液の作成含む) | | | | 目 | 第3種特定 | 全5項目 | | 有機りん化合物溶出量(※1) | | | 有害物質 | (検液の作成含む) | | 191及グルロロロが作山里(スコ) | ※1:検液の作成は、㈱日立プラントサービスにて実施。 別紙、計量結果一覧表 S120044-F (6/6) のとおり 8. 計量方法 | 分析機関名称 | 分析機関及び計量方法の区分 | |---------------|---------------| | (株)日立プラントサービス | 1及び2 | | ㈱湘南分析センター | 3 | | 習和産業㈱ | 4 | - 別紙、計量結果一覧表 S120044-F (1/6~6/6) のとおり 9. 計量の結果 - 別紙、計量結果一覧表において『N.D.』とは、定量下限値未満であることを 10. その 他 表す。 #### 発行日: 平 発行証明書番号: S 株式会社 ロブラントサー 本社: 〒170-6034 東京都 分析技術センタ 住所: 〒271-0064 千葉県 計量証明事業登録番号 千葉県知事 ま503 # <u>計量結果一覧表</u> | <u>件名: 豊</u> | 洲新市場 | 予定地に | こおけ | る盛土 | の土壌調 | 肾查委託 | (その1 |) | 計畫習 | 理者環 | 環境計量士 | : 488 | | | | |---|--------------------|------------------|--------------------|-----------------------------|--------------|----------------|--------------|--------------|---------------------|----------------|-----------|--------------|------------------|--|----------------|--------------|--------------|-------------------|-----------|-------------|----------------|---------------|-------------------|-------------|------------|----------|--------------|--------------|--------------|--------------|--------------|------------------|----------------|--------------|---|-------------|------------------|--------------| | | | | | 8 | | | | | | | | | | | | ± | 壌 溶 | 出量 | | | | | | | | | | | | | | | + | 壤 含 有 | = = | | | | | | 試料点名 | | 探取 | _ 100 | 四塩(l
炭素 | 1,2-シク
ロエタン | | | ン 1,3~ンク
ン ロプロヘン | | テトラクロエチレン | | | | | かきウム及び | | | 水銀及び | セレン及 | び、粉及び | 砒素及U | ふつ素及び | プロラ素及び | シマジン | チオベン | チウラム | ポリ塩化 | | かだかる及び | 六価クロム | シアン | 水銀及び | | | 砒素及び | ふっ茶及び | ほう素及び | | | | | i | 政策 | (mg/L | | 1 | 1 | I ' | 1 | | | クロロエタン
(mg/L) | エチレン
(mg/L) | Ί | 1401CE | 1 | 1 | | 1 | | か その化合物 | 1 | | " | カルブ | | ピフェニル | | その化合物 | | 化合物 | その化合物 | あその化合物 | しその化合物 | りその化合物 | その化合物 | その化合物 | | F 6 - 3 | (深度0- (| 0.05 m | 1) 8/1 | 7 1 | N.D. | | - | | N.D. | | | | N.D. | N.D. | N.D. | | - (IIIg/L) | \(\text{tilg/L}\) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L)
— | (mg/L) | (mg/L)
 | (mg/L) | (mg/L) | (mg/L)
- | (mg/L) | (mg/kg) | (mg/kg) | (mg/kg)
— | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | | F 6 - 3 | (深度0-
(深度 | 0.5 m | | | N.D. | N.D. |
ND | | | - | - | | - | - | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.2 | N.D. 16 | N.D. | N.D. | N.D. | | F 6 - 3 | | | 8/1 | | N.D. | N.D. | | | N.D. | N.D. | | N.D. - | - N.D. | - | | - N.D. | _
N/D | | - | | - | | | | | = | | | | | F 6 - 3 | ****** | 2 m | , | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | 23
18 | N.D. | N.D. | N.D. | | F 6 - 3 | (深度0- 0 | 2.54 m
2.05 m |) 8/1
 8/1 | $\frac{7}{7}$ $\frac{1}{1}$ | N.D. | N.D. | N.D. | | N.D. | | 0.3 | 0.1 | N.D. 21 | N.D. | | N.D. | | F 6 - 6 | (深度0- | 0.5 m |) 8/1 | 7 1 | - | | _ | _ | - N.D. | N.D. | · - | N.D. 0.2 | N.D. | N.D. | N.D. | -
N.D. | N.D. | -
N.D. | -
N.D. | N.D. | | | - N.D. | - 00 | - | - | | | F 6 - 6 | | 0.5 m | | | N.D. | | N.D. | | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | | - | | - | | _ | | | - | - | - | | - N.D. | - R.D. | - N.D. | - N.D. | N.D. | _N.D | N.D. | 22 | N.D. | N.D. | N.D. | | F 6 - 6 | 171-0-6 | |) 8/1 | | N.D. | N.D. | N.D. | | N.D. 0.002 | | N.D. 23 | N.D. | | N.D. | | F 6 - 6
F 7 - 1 | | 2.54 m | | | 1 | N.D. | N.D. | | N.D. $\frac{0.2}{0.4}$ | 0.1 | N.D. | N.D. | N.D. | N.D.
N.D. | N.D.
N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | N.D.
N.D. | N.D. | 17
21 | N.D. | | N.D.
N.D. | | $\frac{F}{F} = \frac{7}{7} - \frac{1}{1}$ | (深度0- 0
(深度0- (| 0.5 m |) 8/18 | 3 4
3 1 | N.D. | N.D. | N.D. | <u>N.D.</u> | N.D. -
 N D | - | - N.D. | -
N.D. | - | | | - | - | | _ | | | - | | - | _ | | - | | - | | | | F7 - 1 | 深度0- (| 0.5 m |) 8/18 | 3 4 | _ | - | - | | <u> </u> | <u> </u> | | - | - | | - | N.D. 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | <u>N.D.</u> | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | F7-10 | | 0.5 m | | | N.D. | | - | | = | | - | - | | _ | | _=_ | _ | | | | | - | - | | - | _ - - | | | F7-1 | | | 8/18 | | N.D. 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | - N.D. | | $\frac{F7-1}{F7-1}$ | | 2 m) | | _ | - | | - | | | | _ | - | - | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. | N.D. -
N.D. | | $\frac{1}{F} \frac{1}{7} - 1$ | | 2 m) | 8/18
8/18 | | N.D. _ N.D. | N.D. | N.D. | N.D. | -
N.D. | - N.D. | -
N.D. | - N.D. | - | _ | - | - | - | | | | N.D. | | | _ | | - | | - | | | | F7-1(| 深度 2 | .90 m) | 8/18 | 4 | N.D. | N.D. | N.D. | | N.D. - IV.D. | N.D. | N.D.
- | N.D. | N.D. | 0.002 | 0.3 | 0.1 | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. |
N.D.
- | <u>N.D.</u> | N.D. | N.D. | _16 | N.D. | N.D. | N.D. | | F 7 - 2 (
F 7 - 2 (| 殊度0-0.
深度0-0 | .05 m)
3.5 m) | 8/17 | | N.D. | | - | | - | | - | | | - | | - | _ | | | | | [| _ | | | | - | | F7 - 2(| 深度 (| | 8/17 | | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. 0.3 | N.D. | F7 - 2(F7 - 2) | | 1 m)
2 m) | 8/17 | | N.D. | N.D. | N.D. | | N.D. 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | N.D. | N.D. | | F7-2(| | 2 m)
3 m) | 8/17
8/17 | | N.D.
N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | N.D.
N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | 0.3 | N.D. | | N.D. 16 | N.D. | N.D. | N.D. | | $\frac{F}{F} = \frac{7}{7} = \frac{2}{3}$ | | .52 m) | 8/17 | | N.D. N.D.
0.004 | 0.4 | N.D.
0.1 | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | $\begin{array}{c} 25 \\ 21 \end{array}$ | N.D. | | N.D. | | F 7 - 3 (
F 7 - 3 (| | | | | N.D. _ | - | - | | - | | _ | | - | <u>.</u> . | | - | - | | - | - | - | - | | - | | - N.D. | - N.D. | | F7 - 3(| 深度0- 0 |).5 m) | | | | | | - | - | - - | | - | | | - | N.D. | N.D. | N.D. | N.D. | <u>N.D.</u> | N.D. | N.D. | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D.
- |
N.D. | N.D. | N.D. | | F7 - 3 | |).5 m)
1 m) | 8/21
8/21 | | N.D. | | | | | - | _ | - | | | | - | | - N.D. | | | - - - | | | - | | | | | F 7 - 3 (| | 1 m) | 8/21 | +(1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. |
N.D. | N.D. |
N.D. | - N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | | 15 | | | N.D. | | F 7 - 3 (3) | | I m) | 8/21 | | | - | = | | | - | - | - | - | - | - | - | | | - | _ | | | | | | - | - | | N.D. | | - | | | - | | | | - | | F7-3(3) | | 2 m)
2 m) | 8/21
8/21 | | N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. | -
N.D. | -
N.D. | -
N.D. | - N.D | - N. D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.005 | 0.3 | 0.1 | N.D. | | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | 21 | N.D. | | N.D. | | F7-3(i | 架度 2 | 2 m) | 8/21 | 4 | | - | - | - | - N.D. | | - N.D. | - N.D. | - N.D. | N.D. | N.D | | - | | - | - | - - | - | | _=_ | | | | | -
N.D. | | · - | - | | | | | | | | F7-3(3) | | 3 m)
3 m) | 8/21 | H | N.D. | N.D. | -
N.D. | -
N.D. | - | - | | - | - | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | 0.1 | N.D. | N.D. | N.D. | N.D. | - | N.D. | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | | N.D. | | F 7 - 3 (7 | 架度 、 | 3 . m) | 8/21 | 4 | | - | - N.D. | N.D.
 - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | <u>N.D.</u> | | | _ | | | | | <u> </u> | - | - ^ | | | - | -
N.D. | - | - | | | | - | | | | | F7-3(2)
F7-3(2) | | 70 m) | | | - N. P. | - | - | | - | _ | | - | - | | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | | 0.1 | | N.D. | | N.D. | | N.D. | F7-3(| ※度 3. | 70 m) | 8/21 | 4 | | _ | _ | N.D. - | | | - | | - | | | | | | - | | - | | - | _=_ | | | | | | | | F7-4(2 | ※度0-0.0 | 05 m) | 8/18 | 3 | N.D. | | | | | - | - | | | | | | | N.D. | | _ | | - | - | | | + | - <u>-</u> - | | F7-4()
F7-4() | | | | | | | - | - | | | | | - | - | | N.D. | N.D. | | | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | | _22 | N.D. | N.D. | N.D. | | F7-4() | 展 0. | 5 m) | 8/18 | 3 | N.D. | | N.D. | N.D. | | | | | | - | - | - - | | - | - | | - | N.D.
- | - | | | | - | | | | | | F7-4(8
F7-4(8 | | l m) | | | ND. |
N.D. | -
N.D. | -
N.D. | - N.D. | - | - | - | | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | | | | N.D. | N.D. | N.D. | | F7-4(8 | 度 1 | m) | 8/18 | 4 | - N.D. | - | - | N.D.
 - | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | - | | | | | | | - | - | | - | - | -
N.D. | - | | | - | | | | | | | F 7 - 4 (8)
F 7 - 4 (8) | | m)
m) | | | -
N.D. | | - | ,-
,-,- | | | | | - | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | | | | | | N.D. | | N.D. | | N.D. | N.D. | N.D. | 19 |
N.D. | N.D. | N.D. | | F7-4(数 | 度 2 | m) | 8/18 | 4 | - N.D. | N.D.
- | N.D. | | | - | | | | | - | | | - | | | | - | _= | - | | | | - | - | | F7-4(8 | 度 2.5 | 58 m) | 8/18 | 1 | - | | | | - | | | - [| | <u> - · </u> | | N.D. | N.D. | N.D. | | N.D. | N.D. |
_N.D. | 0.3 | N.D. | | N.D. | N.D. |
N.D. | N.D. | N.D. | N.D. | N.D. | ND | N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | | F7-4(海
F7-4(海 | €度 2.5 | 58 m) | 8/18 | 4 | N.D. - |] | | | _=_ | - | | | - | | - | - | - | - | | - | - | | | | - | - K.D. | - | | F7-5(X | 度0-0.0 | 5 m) | 8/17 | 1 | N.D. | N.D. | | | | | N.D. | | | N.D. | N.D. | _ | | | | | -
- | | - | | | - | - | | N.D. | | | - | | | | - | | 二 | | F7-5(済
F7-5(済 | 度0- 0. | 5 m) | 8/17 | -1- | ND | - N.D. | | - N.D. | - | - | | - | - | | - | N.D. | N.D. | | N.D. | N.D. | 0.003 | N.D. | 0.3 | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | | N.D. | N.D. | N.D. | N.D. | | F7-5(海 | 度 1 | m) | 8/17 | 1 | N.D. | N.D. | N.D. | | N.D. | | | | | N.D. | N.D. | N.D. | -
N.D. | -
N.D. | - N D | ND | -
0.003 | 0.003 | 0.2 | -
N.D. | -
N.D. | - N.D. | - I | N D | | - | _ | - | | - | | | - | _ | | F7-5(海
F7-5(海 | 度 2 | m) | 8/17 | 1 | N.D. | N.D. | N.D | N.D. 0.003 | 0.002 | 0.3 | | | | | | | N.D. | | | | N.D. | | N.D. | | N.D. | | F 7 - 5 (深
F 7 - 6 (深 | 度0-0.0 | 5 m) | 8/17 | 1 1 | N.D. | N.D. | | | N.D. | | | | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.002 | 0.4 | 0.1 | N.D. | | N.D. | | N.D. | | <u> </u> | 度0- 0.5 | 5 m) : | 8/17 | 1 | - | | | | - | _ | | - N.D. | N.D.
- | N.D. | N.D. | | | N.D. | | N.D. | N.D. |
N.D. | 0.2 | N.D. | N.D. | N.D. |
N.D. | -
N.D. | N.D. | –
N.D. | N.D. | N D | - · | N.D. | N.D. | N.D. | -
N.D. | -
N.D. | | F 7 - 6 (深
F 7 - 6 (深 | 度 0.5
度 1 | 5 m) (
m) (| 8/17
8/17 | 1 | N.D. | N.D. | | N.D. | N.D. | | | | | | N.D. | - | - | - | | - | | - | - | -] | - | - | | - | | | - | - | | | | - N.D. | - N.D. | - N.D. | | F7-6(深 | 度 2 | m) [t | 8/17 | 1 | N.D. | N.D. | N.D. | N.D. | N.D. | | | | | | N.D. | | N.D. | N.D. | | N.D. | N.D. | 0.003 | | | | | | | N.D. | | | | | | | | | N.D. | | F 7 - 6 (深
F 8 - 1 (深 | 度 2.9 | 1 m) 1 | 8/17 | 1 | N.D. 0.005 | 0.3 | N.D. | | N.D. | | | N.D. | | | | | N.D. | 15
N.D. | | | N.D. | | 0 1 (1) | <u>cz.v− 0.0</u> 5 | <u> </u> | 0/41 | <u> </u> | IV.D. | N.D. | N.D. | N.D. [| N.D. - | - 1 | - | - } | - | | _ | | - | _ | - | - | - 1 | _ | | - | | - | - - | - | | - | | #### 発行証明書番号: 株式会社 日立プラントサ 本社:〒170-6034 東京都 分析技術センタ 住所:〒271-0064 千葉県 計量証明事業登録番号 干業無知事立 ### 計量結果一覧表 計量管理者 環境計量士 ■ 件名: 豊洲新市場予定地における盛土の土壌調査委託 (その1) 土壤溶出量 土壤含有量 囚塩化 | シス1,2-シ | 1,3-シ/ロ | ジクロロ | テトラクロ | 1,1,1-トリ | 1,1,2-トリ | トリクロロ | かロエチレン | カロエチレン | カロエタン | カロエタン | エチレン | 1.1ーシ'クロ 試料点名 か'対4及び 六価クロム その化合物 化合物 シアン化合物 水銀及び セレン及び 鉛及び 砒素及び ふっ素及び ほう素及び チオベン ポリ塩化 有機りん シアン化合物 かだりム及び、大価クロム 水銀及び セレン及び 鉛及び 砒素及び ふっ素及び ほう素及び 炭素 ロエタン ロエチレン シマジン チウラム その化合物 その化合物 カルブ の化合物 その化合物 その化合物 その化合物 (mg/L) (mg/1)(mg/L) (mg/L) (ma/!) (mg/L) (mg/L) (mo/L)(mg/L) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) N.D. N.D. N.D. N.D. N.D. N.D. 0.002 N.D. F8-1(深度0-0.5 m) 8/21 4 N.D. 0.5 <u>m</u>) F8-1(深度 8/21 1 N.D. 8-1(深度 8/21 1 N.D. N.D. N.D. N.D. N.D. 1 m) N.D. F 8 - 1 (深度 _m) 8/21 4 N.D. F8-1(深度 8/21 1 N.D. _ m) N.D. 0.004 0.3 N.D. - 8 - 1 (深度 m) 8/21 4 N.D. 8-1(深度 N.D. m) 8/21 N.D. 0.005 N.D. 8-1(深度 8/21 3 m) N.D. ₹8-1(深度 3.42 m) N.D. 0.003 N.D. - 8 - 1 (深度 3.42 m) 4 N.D. · 8 - 2 (深度0- 0.05 m) 8/21 1 N.D. F8-2(深度0-0.5 m) N.D. N.D. N.D. 0.002 N.D. F 8 - 2 (深度0- 0.5 m) N.D. 0.5 m) N.D. N.D. 8/21 1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. F8-2(深度 8/21 1 N.D. 1 m) N.D. 0.003 0.3 N.D. F8-2(深度 1 m) 8/21 4 N.D. F8-2(深度 N.D. m) 8/21 1 N.D. 0.002 N.D. F8-2(深度 2 m) 8/21 4 N.D. F8-2(深度 N.D. 3 m) N.D. N.D. 8/21 I N.D. 0.004 0.3 N.D. F8-2(深度 3 m) 8/21 4 N.D. F 8 - 2 (深度 0.004 3.42 m) N.D. N.D. N.D. N.D. N.D. N.D. 0.3 N.D. F 8 - 2 (深度 3.42 m) N.D. F8-3(深度0-0.05 m) N.D. _ F8-3(深度0-0.5 m) N.D. N.D. N.D. N.D. N.D. 0.003 .002 0.3 N.D. N.D. N.D. N.D. ___ N.D. F8-3(深度0-0.5 m) N.D. _ F 8 - 3 (深度 0.5 m) 8/21 1 N.D. F8-3(深度 N.D. 1 m) 8/21 1 N.D. 0.002 0.3 N.D. 16 N.D. N.D. F8-3(深度 1 m) 8/21 4 N.D. 8 - 3 (深度 2 m) 8/21 1 N.D. 0.002 N.D. F8-3(深度 2 m) 8/21 4 N.D. F 8 - 3 (深度 N.D. 3 m) 8/21 1 N.D. 0.002 0.3 0.1 N.D. 8-3(深度 m) 8/21 4 N.D. _ 8-3(深度 3.33 m) 8/21 1 N.D. 0.004 N.D. N.D. N.D. N.D. N.D. N.D. _ N.D. N.D. N.D. N.D. N.D. N.D. N.D. 8 - 3 (深度 3.33 m) 8/21 4 N.D. 8-4(深度0-0.05 m) 8/17 1 N.D. F 8 - 4 (深度0- 0.5 m) 8/17 1 N.D. N.D. N.D. N.D. N.D. 0.003 0.002 N.D. 8-4(深度 0.5 m) N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. F8-4(深度 N.D. N.D. N.D. N.D. 8/17 1 N.D. 0.002 N.D. N.D N.D. N.D. N.D. N.D. N.D. N.D. 16 22 17 N.D. N.D. N.D. N.D. N.D. N.D. N.D. - 8 - 4 (深度 2 m) 8/17 1 N.D. N.D. N.D. N.D. N.D. 0.3 0.004 0.3 N.D. 0.003 N.D. F 8 - 4 (深度 2.95 m) 8/17 1 N.D. N.D. N.D. F 8 - 5 (深度0-0.05 m) 8/17 1 N.D. N.D. N.D. N.D. N.D. N.D. 0.003 N.D. F8-5(滦度0-0.5 m) 8/17 1 0.002 N.D. F8-5(海底 __0.5 m) 8/17 1 N.D. N.D. N.D. N.D. N.D. N.D. 1 m) 8/17 1 N.D. F8-5(深度 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.003 0.2 N.D. 0.002 0.3 N.D. 15 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. F8-5(深度 1 N.D. N.D. N.D. m) N.D. F8-5(深度 3 m) 8/17 1 N.D. 0.002 N.D. N.D. N D N.D. N.D. N.D. ND. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. F8-5(深度 N.D. 0.003 N.D. 16 N.D. N.D. N.D. F8-6(深度0-0.05 m) N.D. N.D. N.D. N.D. N.D. N.D. N.D. F8-6(深度0-0.5 m) N.D. 0.5 m N.D. N.D. N.D. N.D. N.D. N.D. N.D. F8-6(深度 0.002 N.D. 0.2 N.D. 0.002 0.3 N.D. 0.006 0.2 1 m) 8/17 1 N.D. N.D ND N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. ₹8 ~ 6 (深度 8/17 1 N.D. 0.1 N.D. F8-6(深度 8/17 1 N.D. N.D. N.D. N.D. N.D. N.D. 8/17 1 N.D. N.D. N.D. N.D. N.D. 3 m) N.D. 3.27 m) F8-6 (深度 N.D. N.D. N.D.
N.D. N.D. N.D. N.D. N.D. 0.2 N.D. N.D. N.D. N.D. 0.005 N.D. 〒9-1 (深度0-0.05 m) 1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 8/21 N.D. N.D. N.D. N.D. F9-1(深度0-0.5 m) 8/21 1 N.D. N.D. 0.002 0.3 N.D. 15 N.D. F 9 - 1 (深度0- 0.5 m) 8/21 4 N.D. N.D. 0.5 m) 8/21 1 N.D. m) 8/21 1 N.D. 0.002 0.3 N.D. 9-1(深度 8/21 4 m) N.D. 9-1(深度 _ m) 8/21 1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.005 0.1 N.D. F 9 - 1 (深度 m) 8/21 4 N.D. F 9 - 1 (深度 2.91 m) 8/21 1 N.D. N.D. N.D. N.D. N.D. 0.004 N.D. 0.1 N.D. 2.91 m) F 9 - 1 (深度 8/21 4 N.D. 9-2(深度0-0.05 m) 8/22 4 N.D. ₹9-2(深度0- 0.5 m) 8/22 1 N.D. N.D. N.D. N.D. 0.2 N.D. 15 N.D. N.D. N.D. N.D. 79-2(深度 0.5 m) 4 N.D. N.D. 8/22 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. _ F 9 - 2 (深度 8/22 1 m) N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.4 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 16 N.D. N.D. N.D. N.D. N.D. m) 8/22 4 N.D. N.D. F 9 - 2 (深度 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. F 9 - 2 (深度 2 m) 8/22 1 -N.D. N.D. 0.002 0.4 - N.D. 発行日: 平 発行証明書番号: S 株式会社 日立プラントサー 本社: 〒170-6034 東京都 分析技術センタ 住所: 〒271-0064 干葉県 計量証明事業登録番号: 千葉県知事等 第503号 計量管理者 環境計量士 📧 | 4 | 1名: 豊洲新市場予定地における盛土の土壌調査委託 | (その1) | | |---|------------------------------------|-------|--| | | | | | 計量結果一覧表 | 件名: 豊洲新市場 | 予定地に | おける | 経生の | 土壌調 | <u> 套姿託</u> | (その1) | | | - | | - | | | | 土 | 壌 溶 | 出量 | | | | | | | ·- ·· | | | | | 1 | - | | + | 壌 含 神 | = # - | | | | |--|-----------------------------------|-----------------------------|----------------|--------------|--------------|--------------|-----------|-----------|-----------|--------------|------------------|-------------|----------------|-----------|--------------|-----------------|---------------|-----------|-------------|----------------|-------------------|---|--------------|-------------|--------------------|----------------|-------------|--------------|---------|--------------|--------------|--------------|--------------|------------------|-----------|--------------|--------------| | 試料点名 | 3 | 採取日 | 新計
製量
開方 | 四塩化
炭素 | 1,2-シクロロエタン | ロスチレン | | 1,3-ジカ | | | | | トリクロロ | ベンゼン | , 計"的A及T | ア 六価クロム | シアン | 水銀及び | セレン及び | プ 鉛及び | 砒素及び | ふっ素及し | バ ほう素及び | | チオペン | チウラム | ポリ塩化 | | が対及び | | | _ | センン及び | | 世素及び | ふっ楽及び | ほう素及び | | | | <u> </u> | 3.3k | (mg/L) | (mg/L) | 1 | 1 | (mg/L) | 1 | (mg/L) | グロロエタン
(mg/L) | (mg/L) | エチレン
(mg/L) | (mg/L) | ていに古る | b 化合物
(mg/L) | 化合物
(mg/L) | 1 | I | 1 | め その化合物
(mg/L) | 1 | | 1 | カルブ | | ピフェニル | 10 | その化合物 | | 化合物 | その化合物 | その化合物 | その化合物 | かその化合物 | | | | F9-2(深度 | | 8/22 | | N.D. - Ung/L/ | (mg/L) | (ilig/ L) | (lilg/L) | (IIIg/L) | (Jilg/L) | (siig/L) | (mg/L) | (mg/L) | (mg/L)
- | (mg/L) | (mg/L) | (mg/L)
- | (mg/L) | (mg/kg) (mg/kg)
— | | <u>F9-2(深度</u>
F9-2(深度 | 3 m) | 8/22 | | N.D. - N.D. | | - N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.002 | 0.3 | N.D. | F9-2(深度 | 3.50 m) | 8/22 | 1 | - | | - | - | - N.D. | - N.D. | - N.D. | - N.D. | N.D. | N.D.
- | N.D. 0.3 | N.D. | N.D. | N.D. |
N.D. | N.D.
15 | N.D. | N.D. | N.D. | | F 9 - 2 (深度
F 9 - 3 (深度0- | 3.50 m) | | | N.D. = | - | | - | - | | - | - | - | - | | - | - | | - N.D. | - | K.D. | - N.D. | N.D.
 - | - 15 | IV.D. | N.D. | N.D. | | F 9 - 3 (深度0- | | 8/21 | 1 | - N.D. | - N.D. | N.D. | N.D.
- | N.D. -
 N.D. | N.D. | 0.3 | N.D. | N.D. | <u>-</u>
 N.D. | -
N.D. | N.D. | - | N.D. | - N.D. | | - | - | - 17 | | - | | | F9-3(深度0-
F9-3(深度 | | | 4 | -
N.D. | - | | - | | - | | | | _ | | - | - | - | | - | - | - | - | - TK.D. | - IX.D. | N.D. | - N.D. | - N.D. | N.D. | - N.D. | N.D. | N.D. | N.D.
- | N.D. | <u>17</u> | N.D. | N.D. | N.D. | | F 9 - 3 (深度 | 1 m) | 8/21
8/21 | $\frac{1}{1}$ | N.D. N.D.
N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | 0.002 | 0.4 | N.D. | - N.D. | ~
N.D | | - N.D. | - | | - | - | - | - | | | | | | F 9 - 3 (深度
F 9 - 3 (深度 | | 8/21 | 4 | - | - | - | - | - | - | | - | | - | | | _ | - | N.D. | - N.D. | - K.D. | - | - | - N.D. | N.D.
- | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D.
- | N.D.
 - | N.D.
- | _ N.D.
 | N.D. | N.D. | N.D. | N.D. | | F 9 - 3 (深度 | $\frac{2 \text{ m}}{2 \text{ m}}$ | 8/21
8/21 | 4 | N.D. <u>N.D.</u> | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | 0.002 | 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | N.D. | N.D. | | F9-3(深度
F9-3(深度 | | 8/21 | 1 | N.D. | N.D. 16 | N.D. |
N.D. | N.D. | | . ,,,,,,,,, | 3 m)
3.69 m) | 8/21
8/21 | 1 | N.D.
N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | -
N.D. | - N.D. | - | - N.D. | - N.D | - | -
N.D. | -
N.D. | - | - | - | N.D. | - | _ | | - | | | | | _ | | F9-3(深度 | 3.69 m) | 8/21 | 4 | _ | - | _ | - | - | | - | - | ~ | - | - N.D. | - IV.D. | N.D. | - N.D. | N.D. | N.D.
- | N.D. | N.D. | 0.3 | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.Đ.
- | 18 | N.D. | N.D.
- | N.D. | | F9-4(深度0-
F9-4(深度0- | 0.05 m) | 8/17
8/17 | 1 | N.D. | N.D.
- | N.D. - N.D. | - N.D. | - | | - N.D. | - | - | - | - | - | - | | - | - | | | | | - | | | | | | F、9 - 4 (深度 | 0.5 m) | 8/17 | 1 | N.D. N.D.
- | N.D. | N.D. | N.D. | N.D. | <u> 0.003</u> | 0.002 | 0.2 | N.D. N.D | N.Đ.
- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | <u>F9-4(深度</u>
F9-4(深度 | | 8/17
8/17 | | N.D. | N.D. | N.D.
N.D. | N.D. N.D.
N.D. | N.D. | N.D. | N.D. | | 0.003 | | 0.3 | N.D. _15 | N.D. | N.D. | N.D. | | F 9 - 4 (深度 | 3 m) | 8/17 | 1 | N.D. | N.D. | N.D. | N.D. | | N.D. N.D.
N.D. | N.D.
N.D. | N.D. | N.D. | 0.003 | 0.004 | $\begin{array}{c} 0.1 \\ 0.2 \end{array}$ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | <u>F 9 - 4 (深度</u>
<u>F 9</u> - 5 (深度0- (| 3.29 m) | 8/17
8/17 | | N.D. | N.D.
N.D. | N.D. 0.003 | 1 | 0.1 | N.D. | F 9 - 5 (深度0- | 0.5 m) | 8/17 | 1 | | | | - N.D. | - K.D. | N.D. | - N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | 0.003 | 0.3 | N.D. | N.D. | N.D. | N.D. |
N.D. | N.D. | N.D. | . N.D. | N.D. | -
N.D. |
N.D. | -
N.D. | N.D. |
N.D. | N.D. | | <u>F9-5(深度</u>
F9-5(深度 | 0.5 m)
1 m) | 8/17
8/17 | | N.D. | - | | - | | | - | - | _ | | _ | | | - | | | | | | | | | - N.D. | | F9-5(滦度 | 2 m) | 8/17 | ()- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D.
0.006 | 0.4
N.D. | N.D. N.D.
N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | | <u>F 9 - 5 (深度</u>
F 9 - 5 (深度 | 3 m)
3.36 m) | 8/17
8/17 | | N.D. - N.D. | 0.005 | 0.2 | N.D. | F 9 - 6 (深度0- (| | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | <u>N.D.</u> | N.D. | N.D | N.D. | N.D. | 0.006 | 0.2 | N.D. | F 9 - 6 (深度0-
F 9 - 6 (深度0- | | 8/21
8/21 | 1 4 | - <u>-</u> - | | - | - | - | | - | _= | - | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.004 | 0.2 | 0.1 | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | N.D. | N.D. | | 44 | | | - | N.D. | | | - | - | | - | | | - | - | | | N.D. | | - | - | - | - | | - | | | | F 9 - 6 (深度
F 9 - 6 (深度 | | 8/21
8/21 | 1 | - | - | - | - | - | - | | _ | - | - | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.4 | 0.1 | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | 16 | N.D. | N.D. | N.D. | | F 9 - 6 (深度 | | 8/21 | $\frac{3}{4}$ | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | | | - | - | - | - | | | - | - | | | - |
N.D. | | - | | | | - | | - | | | F9-6(深度
F9-6(深度 | 2 m) | | 1 | - | - | | | | - | - | | - | | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | - N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 19 | N.D. | N.D. | N.D. | | - XX | 2 m)
2 m) | | 3 4 | N.D. | - <u>-</u> - | - | | - | | _ | | | - | | | |
N.D. | | | <u>-</u> | | - | - | - | | - | | - () | 3 m) | | 1 | | - | | | | | - | - | _ | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | _N.D | N.D. - N.D. | N.D. | | 1000 | 3 m)
3 m) | | 3 4 | N.D. | N.D. | N.D. | N.D.
- | N.D. - | - | | - | <u>-</u> | | | - | - | | | | | -
N.D. | - | | - | | - | - | - | | | | 79-6(深度 3 | | | | - | | | | | - | | - | - | - | | N.D. | N.D. | N.D. | | | | 0.003 | | | | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | 17 | N.D. |
N.D. | N.D. | | 〒9-6(深度 3
〒9-6(深度 3 | 3.70 m) | 8/21 | 4 | | N.D. | - | | - | 1 1 | | - | - | _ | - | | - | `- | - | - | | | | | | - | - | - | | 7 10 - 1 (深度0- 0 | 0.05 m) | 8/18 | 4 | | N.D. | N.D. | N.D. | | | | | N.D. | | N.D. | | | - | _ | | | - | | | - | - | - - | | N.D.
- | - | | | | - | | | - | | | 7 10 - 1 (深度0- (
7 10 - 1 (深度0- (| 0.5 m) | 8/18
8/18 | 1 4 | | | _=- | | | | - | | | | - | N.D. | N.D. | N.D. | N.D. | | N.D. | | 0.1 | N.D. | | | N.D. | N.D. | _ | | N.D. | | | N.D. | 31 | | | N.D. | | 710-1 (深度 (| 0.5 m) | 8/18 | 4 | | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | | _ | | - | - | | | - | | | | - | N.D.
- | - | | | - | | - | | - | | | | 1 m) | 8/18 [*]
8/18 | | -
V.D. | -
N.D. | N.D. | N.D. | N.D | N.D | N.D. | -
N.D. | - ND |
N.D. | –
N.D. | N.D. 0.4 | N.D. | N.D. | N.D. | N.D. | N.D. | - | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | 10-1 (深度 | 2 m) | 8/18 - | $\overline{1}$ | - | - · | [| - | - " | - | - | | - 1 | _ | - | N.D. | N.D. | N.D. | N.D. | | | | 0.4 | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | -
N.D. | -
16 | N.D. | -
N.D. |
N.D. | | 10-1(深度 / | 2 m) 3 | 8/18
8/18 | $\frac{4}{1}$ | √.D. |
N.D. -
N.D. | - " | - | | - | | - 1 | | | | - [| | - | N.D. | _ | - | | - | | _ | - | | | | 10-1 (深度 | 3 m) | 8/18 | 4 | V.D. | N.D. | N.D. | | | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D.
- | - N.D. | IV.D. | N.D.
- | N.D. | N.D. | <u>0.004</u>
- | 0.4 | N.D. | N.D.
- | N.D.
- | N.D. N.D.
- | N.D. | N.D. | N.D. | N.D. | | 10-1 (深度 3
10-1 (深度 3 | .73 m) (| 8/18
8/18 | 1 1 | - L | N.D | -
N.D. | - N D | N.D. | –
N.D. |
N.D. | - | - | -
N.D. | _
N.D. | | | | N.D. | | | | | | | N.D. | N.D. | N.D. | | N.D. | | | N.D. | | | | | N.D. | | `10 - 2 (深度0- 0. | .05 m) i 8 | 3/22 | 4 1 1 | V.D. | N.D. | N.D. | | | | | | | | N.D. | - | - | - | | - | | - | - | - | | | | | N.D.
- | - | - | - | - | - | - | | | | | 10-2(深度0-010-2(深度 0 | 0.5 m) 8
0.5 m) 8 | 3/22 | 1 | -
J D | - ND | -
N.D. | | - | - | - | - | | - | _ | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | 0.3 | N.D. | 21 | N.D. | N.D. | N.D. | | 10 - 2 (深度 | 1 m) 8 | 3/22 | 1 | - | - | - | | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | -
N.D. | -
N.D. | -
N.D. | N.D. | N.D. | -
N.D. | 0.004 | 0.4 | N.D. -
N.D. | -
N.D. | -
N.D. | -
N.D. | -
26 | -
N.D. | -
N.D. | N.D. | | 10 - 2 (深度
10 - 2 (深度 | 1 m) 8
2 m) 8 | 3/22 | 4 Ñ | .D. | N.D. | N.D. | N.D. | N.D. | N.D. | | | | | N.D. | - | - | | - | - | - ' | | - | - | _ | | - | - | | - | [| - | _ | | - | | - IV.D. | - N.D. | | 10 - 2 (深度 | 2 m) 8 | 3/22 | 4 N | .D. | N.D. | | | | | N.D. | -
N.D. |
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
– | N.D. | N.D. | N.D. | 0.3 | N.D. | N.D.
- | N.D. 27 | N.D. | N.D. | N.D. | | 10 - 2 (深度 : 10 - 2 (深度 : : | 3 m) 8
3 m) 8 | /22 | 1 1 | <u>-</u> | -
N.D. | - T | - N.D. | - | | - | | - | - | - | | N.D. | N.D. | N.D. | N.D. | N.D. | | 0.5 | 0.1 | | N.D. | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | | | N.D. | | 10 - 2 (深度 3. | 62 m) 8 | /22 | | - | - | - | | N.D.
- | N.D. | N.D. | N.D | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. | -
N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | –
N.D. | N.D. | -
N.D. | N.D. | | 10 - 2 (深度 3.0
10 - 3 (深度0- 0.0 | 62 m) 8 | /22 4 | N | .D. | N.D. | N.D. | N.D. | | | | | | | N.D. | - | - | - | - | - | - | - | - | | - | - | - | | - | - N.D. | - | - | _N.D. | - | | N.D. | N.D.
- | N.D. | | 10 - 3 (深度0- 0. | .5 m) 8 | /22 1 | 1 | | -
- | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | -
N.D. | N.D. | -
N.D. | -
N.D. | 0.002 | 0.1 | -
N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N D | - N D | - I | -
N.D. | -
18 | - N.D. | - N.D. | N.D. | | | | | | | | · · · · · · | | | | | | | | I | | | | 3/6 | | 1.11D. | <u>0.002 </u> | V.1 | ויישיי | IV.D. | 11.12. | 11.12. | ויטיין | N.D. [| וייט. | וייחי | וייחייו | IN.D. | IV.D. | 10 | N.D. | N.D. | IV.D. | 3/6 #### 発行日: 発行証明書番号: 株式会社 日立プラントサ 本社:〒170-6034 東京都 分析技術センタ 住所: 〒271-0064 千葉県 # 号 計量証明事業登録番号 千葉県知事登場 第503号 計量管理者 環境計量士 ■ ### 計量結果一覧表 件名: 豊洲新市場予定地における盛土の土壌調査委託 (その1) 土壤溶出量 土壤含有量 四塩化 1.2-シクロ 1.1-シクロ シス1,2-シ 1,3-ジクロ ジクロロ テトラクロ 1.1.1-トリ 1.1.2-トリ トリクロロ 試料点名 かさか及び 六価クロム その化合物 化合物 水銀及び センン及び 鉛及び 起薬及び ふっ素及び ほう素及び その化合物 その化合物 その化合物 その化合物 その化合物 その化合物 採取日 シアン化合物 ポリ塩化 有機りん かぶりム及び 六価クロム チオベン シアン 化合物 水銀及び セレン及び 鉛及び 砒素及び ふっ素及び ほう素及び その化合物 その化合物 その化合物 その化合物 その化合物 ベンゼン 炭素 ロエタン ロエチレン クロロエチレン ロプロヘン メタン ロエチレン クロロエタン クロロエタン エテレン チウラム カルブ $(m\sigma/L)$ (mg/L) $(m\sigma/L)$ (mg/L) (mg/L)(mg/L) (mg/L) (mg/L) (m_P/L) (mg/L) (mg/L) [(mg/L) (mg/L) (me/L)(mg/kg) (mg/kg) (mg/L) (mg/L) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 10 - 3 (2 4 N.D. F 10 - 3 (深度 1 N.D. N.D. N.D. N.D. N.D. 0.002 0.4 N.D. F 10 - 3 (深度 4 N.D. m) N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. F 10 - 3 (深度 m) 8/22 1 N.D. N.D. N.D. N.D. N.D. 0.006 0.4 N.D. 24 N.D. N.D. N.D. 710-3(深度 2 m) 8/22 4 N.D. 10 - 3 (深度 m) 8/22 1 N.D. N.D. N.D. N.D. 0.0020.4 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 20 N.D. N.D. N.D. N.D. N.D. N.D. N.D. F 10 - 3 (深度 N.D. m) 8/22 4 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 3.97 m) F 10 - 3 (深度 8/22 1 N.D. N.D. N.D. N.D. N.D. 0.002 0.002 N.D. 7 10 - 3 (深度 3.97 m) N.D. N.D. N.D. N.D. N.D. 8/22 4 N.D. N.D. N.D. N.D. N.D. N.D. _ F 10 - 4 (深度0- 0.05 m) N.D. F 10 - 4 (深度0- 0.5 m) N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.2 0.1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 33 N.D. N.D. N.D. N.D. N.D. F 10 - 4 (深度 0.5 m) N.D. N.D. ND N.D. N.D. N.D. N.D. F 10 - 4 (深度 1 N.D. N.D. N.D. N.D. m) N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. ND N.D. N.D. N.D. N.D. 0.003 N.D. 10 - 4 (深度 8/22 1 N.D. N.D. N.D. N.D. N.D. N.D. \mathbf{m} N.D. 8/22 1 N.D. N.D. 8/22 4 N.D. N.D. N.D. F 10 - 4 (深度 2.98 m) N.D. 0.4 N.D. F 10 - 5 (深度0- 0.05 m) N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. F 10 - 5 (深度0- 0.5 m) 8/22 1 N.D. N.D. 0.002 N.D. 27 N.D. N.D. N.D. F 10 - 5 (深度 0.5 m) 8/22 4 N.D. F 10 - 5 (深度 1 m) 8/22 1 N.D. N.D. N.D. N.D. 0.003 N.D. F 10 - 5 (深度 **m**) 8/22 4 N.D. N.D. N.D. N.D. N.D. ·N.D. N.D. N.D. N.D. N.D. N.D. F 10 - 5 (深度 8/22 1 <u>m)</u> N.D. N.D. N.D. N.D. N.D. 0.006 N.D. 0.4 N.D. N.D. N.D. 19 N.D. F 10 - 5 (深度 m) 8/22 4 N.D. F 10 - 5 (海鹿 m) 8/22 1 N.D. 0.012 N.D. N.D. N.D. N.D. N.D. 0.5 N.D. F 10 - 5 (深度 8/22 4 N.D. N.D. N.D. m) N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. F 10 - 5 (深度 3.69 m) N.D. F 10 - 5 (深度 3.69 m) 8/22 4 N.D. F10-6(深度0-0.05 m) 8/18 3 N.D. F 10 - 6 (深度0- 0.5 m) N.D. 0.002 N.D. N.D. N.D. N.D. N.D. 0.1 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. 15 N.D. N.D. N.D. N.D. F 10 - 6 (深度0- 0.5 m) N.D. F 10 - 6 (深度 0.5 m) 8/18 3. N.D. F 10 - 6 (深度 1 m) 8/18 1 N.D. N.D. N.D. 0.002 N.D. 0.4N.D. N.D. N.D. N.D. N.D. F 10 - 6 (深度 N.D. N.D. 1 m) 8/18 3 N.D. 1 m) 8/18 4 2 m) 8/18 1 F 10 - 6 (深度 N.D. F 10 - 6 (深度 N.D. N.D. N.D. 0.002 0.2 N.D. 22 N.D. N.D. N.D. N.D. N.D. 10 - 6 (深度 m) 8/18 3 N.D. _ 10 - 6 (深度 2 m) 8/18 4 __ N.D. F 10 - 6 (深度 3 m) 8/18 1 N.D. N.D. N.D. N.D. N.D. N.D. 0.007 N.D. F 10 - 6 (深度 3 N.D. N.D. N.D. 3 m) N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. F 10 - 6 (深度 3 m) 8/18 4 N.D. 10-6 (深度 3.42 m) 8/18 N.D. N.D. N.D. 0.3 N.D. N.D. 0.004 N.D. 21 N.D. N.D. N.D. F 10 - 6 (深度 3.42 m) 8/18 N.D. _ `-F 10 - 6 (深度 3.42 m) 8/18 N.D. F 11 - 1 (深度0- 0.05 m) 8/22 N.D. F 11 - 1 (深度0- 0.5 m) 8/22 N.D. N.D. N.D. 0.002 N.D. N.D. N.D. 0.3 N.D. F 11 - 1 (深度 0.5 m) 8/22 4 N.D. F 11 - 1 (深度 1 m) 8/22 0.2 N.D. N.D. 0.004 N.D. F 11 - 1 (深度 m) 8/22 4 N.D. F 11 - 1 (深度 2 m) 8/22 1 N.D. N.D. N.D. 0.3 N.D. N.D. N.D. N.D. N.D. N.D. 27 N.D. F 11 - 1 (茶度 2 m) 8/22 4 N.D. F 11 ~ 1 (深度 3 m) 8/22 1 N.D. N.D. 0.3 _ N.D. F 11 - 1 (深度 m) 8/22 N.D. F 11 - 1 (深度 3.90 m) 8/22 1 N.D. N.D. N.D. N.D. N.D. 0.009 N.D. N.D. N.D. N.D. N.D. N.D. 0.1 N.D. F 11 - 1 (深度 3.90 m) 4 N.D. N.D. N.D. 8/22 N.D. N.D. N.D. N.D. N.D. N.D. N.D. -F 11 - 2 (深度0- 0.05 m) 8/22 4 N.D. F 11 - 2 (深度0- 0.5 m 0.2 N.D. .50 N.D. N.D. N.D. N.D. F 11 - 2 (深度 0.5 m N.D. N.D. N.D. N.D. · N.D. N.D. N.D. N.D. N.D. ' N.D. N.D. F 11 - 2 (深度 1 m N.D. N.D. N.D. N.D. N.D. 0.4 N.D. N.D. 15 N.D. 0.002 N.D. 11 - 2 (深度 m) N.D. F 11 - 2 (漢度 2 m) N.D. N.D. N.D. N.D. N.D. 0.002 N.D. F 11 - 2 (深度 4 N.D. F 11 - 2 (深度 m) N.D. N.D. N.D. N.D. 0.002 0.2 N.D. 3 m) 4 N.D. 7 11 - 2 (深度 3.95 m) 1 N.D. N.D. N.D. 0.005 0.3 N.D. F 11 - 2 (深度 3.95 m) 4 N.D. _ 7 11 - 3 (深度0- 0.05 m) _ 22 4 N.D. F 11 - 3 (深度0- 0.5 m) 1 N.D. N.D. N.D. 0.002 N.D. N.D. N.D. N.D. N.D. 0.3 0.1 N.D. N.D. N.D. 25 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. F 11 - 3 (深度 0.5 m) 4 N.D. 711~3 (深度 <u>1 m)</u> 1 N.D. N.D. N.D. N.D. N.D. N.D. 0.002 0.4 N.D. 15 N.D. N.D. N.D. F 11 - 3·(深度 m) 8/22 N.D. -_ F11 - 3(深度 <u>m)</u> N.D. N.D. N.D. N.D. N.D. N.D. N.D. 0.3 N.D. 17 N.D. N.D. N.D. N.D. F11-3(深度 4 N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. N.D. # 発行日: 平 発行証明書番号: S 株式会社 日立プラントサー 本社: 〒170-6034 東京都! 分析技術 センタ 住所: 〒271-0064 干葉県 計量証明事業登録番号 干葉県知事登録 第503号 計量管理者 環境計量士 # 計量結果一覧表 | 件名: 豊洲新市場予定地區 | こおける | 6盛十0 | り土壌器 | 香委託 | (その1) |) | 計量管 | 理者環 | 境計量士 | | | | | |--|----------------------|---|--------------|-----------------|--------------|---------------------|----------------------|--------------|----------------|--------------------|--------------------|---------------|--------------|--|----------------|------------------|------------------|------------------|-------------------|------------------|-----------------|---|--|--------------|----------------|---------------|-----------|-----------------|--------------|-----------|------------------|-------------|----------------|--------------|-----------------|-------------| | | | 9 ## | | | | | | _ | | | | | | ± | 壤 溶 | 出量 | | | | | | | | | | | | Ì | | | <u>±</u> | 堪含 有 | 有量 | | | | | 試料点名 | 採取日 | 日
日
日
日
日
日
日
日
日
日
日
日
日 | 四塩化 炭素 | 1,2-シウ:
ロエタン | | ロ シス1,2〜3
クロロエチレ | / 1,3-ジク!
ン ロフロヘン | | テトラクロ
ロエチレン | 1,1,1-トリ
クロロエダン | 1,1,2-トリ
クロロエギン | トリクロロ
エチレン | ベンゼン | か、沙4及で
その化合物 | ブ 六価クロ 化合物 | | 水銀及び
その化合 | セレン及び その化合物 | が
鉛及び
その化合物 | 砒素及び
をの化合物 | ふっ素及び
その化合物 | プロラ素及び
がその化合物 | y
シマジン | チオベンカルブ | チウラム | ポリ塩化
ピフェニル | | かミウム及び
その化合物 | 六価クロム | シアン化合物 | 水銀及び | セレン及び | 給及び | 戦業及び | ふっ来及び
かその化合物 | ほう楽及び | | F.1: 2 / 数库 0 |) 0 (0) | Ü | (mg/L) | (mg/L) | | (mg/L) | | (mg/L) 1 | (mg/L) | 1 | (mg/L) | 1 . | (mg/L) | (mg/L) | 1 | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | 1 | 1 | (mg/kg) | | (mg/kg | | |) 8/22
) 8/22 | | N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. | N.D. 0.3 | N.D. | F11 - 3 (深度 3.96 m | | | | - | | _ | | - | - | - | - | | _ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | 0.4 | N.D. 27 | N.D. | N.D. | N.D. | | F 11 - 3 (深度 3.96 m
F 11 - 4 (深度0- 0.05 m | | | N.D.
N.D. | N.D.
 - | - - | - | - | - | - | <u> </u> | | - | | | - | <u> </u> | | | | - | - | - | _ | | | _ | | F 11 - 4 (深度0- 0.5 m
F 11 - 4 (深度0- 0.5 m | | | _= | | - | = | - | - | - | - | - | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.004 | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | - | N.D. | F11-4 (深度) 0.5 m | | | N.D.
N.D. | N.D. | N.D. | N.D. | - | - | _ _ | - | - - | - | - | <u> </u> | - | - | | - | - | N.D. | = | - | | - | - | | - | | | | 7 |) 8/18
) 8/18 | | -
N.D. | N.D. | ALD. | - |] - | _ | - | - | - | | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | 18 | N.D. | N.D. | N.D. | | | 8/18 | | - N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | - | - | - | <u> </u> | - | - | <u> </u> | - | - | - | - | - | <u> </u> | N.D. | <u>-</u> _ | | | | - | | | - | | | F 11 - 4 (深度 2 m
F 11 - 4 (深度 2 m |) 8/18
) 8/18 | | -
N.D. | N.D. | -
N.D. | - N.D. | -
N.D. | - | - | - | - | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | - N.D. |
N.D. | | F 11 - 4 (深度 2 m | 8/18 | 4 | - N.D. | N.D. | IV.D. | N.D.
- | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | N.D.
- | N.D. | - - | <u> </u> | | - | - | - | - | | - | - | - | - <u>-</u> | - | -
N.D. | <u>-</u> | | <u> </u> | - | | | <u> </u> | | = | | | 8/18
8/18 | | -
N.D. | N.D. | N.D. | N.D. | N.D. | - N.D. | - | -
N.D. | -
- | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | - | N.D. | N.D. | N.D. | N.D. | N.D. | 23 | N.D. | N.D. | N.D. | | F11-4(深度 3 m | 8/18 | 4 | - | - N.D. | - IV.D. | - IV.D. | - N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | - | | - | - - | - | - | - - | - | - | | <u> </u> | - | | -
N.D. | <u>-</u> | | - | - - | | _ | <u> </u> | - | <u> </u> | | F 11 - 4 (深度 3.58 m
F 11 - 4 (深度 3.58 m | | _ | -
N.D. | N.D. | N.D. | N.D. | -
N.D. |
N.D. | - N.D. | | -
N.D. | -
M.D. | -
N.D. | N.D. 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | | N.D. | F 11 - 4 (深度 3.58 m | 8/18 | 4 | | _ | - | - | - | | N.D.
- | N.D.
- | N.D.
- | N.D. | N.D. | | - | | - | - - | - - | - | _ | - | - | - | | - | -
N.D. | - | - | | - | - | - 1 | - | | _ | | <u>F11 - 5 (深度0- 0.05 m</u>
F11 - 5 (深度0- 0.5 m | | 1 1 | N.D. -
N.D. | - | - N.D. | - N.D. | - | - | - | _ | - | - | | - | ~ | | | | | _ | | _ | | - | _ | | F 11 - 5 (深度 0.5 m | 8/21 | 1 | N.D. N.D.
- | N.D. | N.D.
- | 0.004 | 0.4 | 0.2 | N.D. | N.D.
- | N.D. | N.D. | N.D. | -N.D.
- | N.D. | N.D. | N.D.
- | N.D. | <u>15</u>
- | N.D. | N.D. | N.D. | | | 8/21
8/21 | 1—— | N.D.
N.D. | N.D. 0.3 | N.D. 22 | N.D. | N.D. | N.D. | | F11-5(深度 2.90 m | 8/21 | 1 | N.D. N.D.
0.003 | 0.3 | N.D. | N.D. | N.D.
N.D. | N.D. 19
49 | N.D.
N.D. | N.D.
N.D. | N.D. | | F 11 - 6 (深度0- 0.05 m)
F 11 - 6 (深度0- 0.5 m) | | | N.D. - N.D. | -
N.D. | -
N.D. | | - | - | _ | | _ | _ | | - | | | - | | | - | | _ | - 1 | - | | | F 11 - 6 (深度 0.5 m) | 8/21 | 1 | | N.D. N.D.
- | N.D.
- | N.D.
- | N.D. | N.D. | N.D.
- | 0.003 | 0.3 | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | <u>N.D.</u> | N.D. | <u>N.D.</u>
- | N.D. | <u>17</u> | N.D. | N.D. | <u>N.D.</u> | | <u>F11-6(深度 1 m)</u>
F11-6(深度 2 m) | 8/21
8/21 | | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D.
N.D. | N.D. 0.002 | 0.3 | 0.1 | N.D. 19 | N.D. | N.D. | N.D. | | F 11 - 6 (深度 2.73 m) | 8/21 | 1 | N.D. 0.004
N.D. | N.D. | 0.004
0.003 | | $\begin{array}{c} 0.1 \\ 0.1 \end{array}$ | N.D. | N.D. | N.D.
N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | <u>18</u>
 | N.D. | N.D. | N.D. | | F 12 - 1 (深度0- 0.05 m)
F 12 - 1 (深度0- 0.5 m) | 8/22 | 4 | N.D. | N.D.
- | N.D.
- | N.D. <u>N.D.</u> | N.D. |
N.D. | N.D. | N.D. | -
N.D. | N.D. | -
N.D. | 0.4 | 0.1 | -
N.D. |
N.D. | -
N.D. | -
N.D. | | - | | | | | - | | - 1 | | | | 8/22 | 4 | N.D. - | | - | | - | - | - N.D. | | - | | | | - N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D. | 24 | N.D. | N.D. | N.D. | | | 8/22
8/22 | 4 | N.D. | N.D. |
N.D. | N.D. |
N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | 0.5 | N.D. 17 | N.D. | N.D. | N.D. | | F 12 - I (深度 2 m)
F 12 - I (深度 2 m) | 8/22
8/22 | 1 | -
N.D. | | - | _ | _ | _ | _ | - | _ | | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.002 | 0.4 | N.D. 16 | N.D. | N.D. | N.D. | | F 12 - 1 (深度 3 m) | 8/22 | 1 | - N.D. | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D.
- | N.D. | N.D.
- | N.D.
- | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. |
N.D. | N.D. | 0.3 | N.D. | -
N.D. | - N.D. | -
N.D. | -
N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. | –
N.D. | -
N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. | | F 12 - 1 (深度 3 m)
F 12 - 1 (深度 3.75 m) | 8/22 | 4 | N.D. | | _ | - | | _ | _ | - | - | - | - | _ | | - | | - 1 | - N.D. | - IV.D. | - N.D. | - N.D. | | N.D. | N.D. | | F 12 - 1 (深度 3.75 m) | 8/22 | 4 | N.D. N.D.
- | N.D. | N.D. | N.D. | 0.005 | N.D. | 0.3 | N.D.
- | N.D. | N.D. | N.D. | N.D. | _15 | N.D. | N.D. | N.D. | | F 12 - 2 (深度0- 0.05 m)
F 12 - 2 (深度0- 0.5 m) | | | N.D. - | - | - | | | | - | - | | | | | | | | - | | - | | | | | | | F 12 - 2 (深度 0.5 m) | 8/22 | 1 | N.D. | N.D. | N.D. | N.D. | | | N.D. | | N.D. | N.D. | N.D. | N.D. | _N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | <u>0.3</u>
- | | N.D. | N.D. | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.Đ. | N.D. | <u> 17</u> | N.D. | N.D. | N.D. | | F 12 - 2 (深度 1 m)
F 12 - 2 (深度 2 m) | | | N.D.
N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | | N.D. | | 0.4 | N.D. | N.D. | | | N.D. | N.D. | | | N.D. | | N.D. | N.D. | | $\overline{}$ | N.D. | | F 12 - 2 (深度 3 m) | 8/22 | 1 | N.D. N.D.
N.D. | N.D. | | N.D. | N.D. | N.D. | N.D. | | N.D. | N.D. | | | N.D. | N.D. | | N.D.
N.D. | | | N.D. | | | | N.D. | | F 12 - 2 (深度 3.72 m)
F 12 - 3 (深度0- 0.05 m) | 8/22 | $\frac{1}{1}$ | | | N.D. | N.D. | N.D. | N.D. | | | N.D. | | N.D. 0.002 | | 0.1 | N.D. | | | N.D. | N.D. | | N.D. | N.D. | | N.D. | | N.D. | | N.D. | | 7 12 - 3 (深度0- 0.5 m) | 8/22 | 1 | | - | - | - | - | | - | | | - | - | N.D. 0.4 | 0.1 | N.D. 20 | N.D. | N.D. | N.D. | | | 8/22 | 1 | N.D. | N.D. | N.D. | N.D. | | N.D. | | | | | N.D.
N.D. | -
N.D. | -
N.D. | N.D. | -
N.D. | ND | - N.D. | 0.002 | - | -
N.D. | - | - | | | - | | - | | - | | _: - | | \equiv | - | | 7 12 - 3 (深度 2 m) | 8/22 | 1 | N.D. <u>N.D</u> . | 0.4 | N.D. | | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | | | 19
N.D. | | N.D. | N.D. | | 3 12 - 3 (深度 3 m) 3 12 - 3 (深度 3.69 m) | 8/22 | 1 | N.D. | | N.D. | | | N.D. | | | | | N.D. | N.D. | N.D. | N.D.
N.D. | | N.D. | N.D. | | 0.4 | N.D. | N.D. | N.D.
N.D. | N.D.
N.D. | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 15 | N.D. | N.D. | N.D. | | 12-4 (深度0-0.05 m) | 8/20 | | N.D. | N.D. | | N.D. | | N.D. | | | | | N.D. | | | | _ | - | - | | - | - | _ | | | - | _ | N.D. | | N.D. | - | N.D.
- | 18 | N.D. | N.D. | N.D.
- | | F 12 - 4 (深度0- 0.5 m)
F 12 - 4 (深度 0.5 m) | 8/20 | | -
N.D. | N.D. | N.D. |
N.D. | N.D. | -
N.D. | N.D. | -
N.D. | N.D. | N.D. | -
N.D. | _ N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
- | N.D. | 0.3 | N.D. 16 | N.D. | N.D. | N.D. | | 12-4 (深度 1 m)
12-4 (深度 1 m) | 8/20 | 1 | - | - | - | | _ | - | | - | | - | - | N.D. 0.3 | N.D. | 12-4 (深度 2 m) | 8/20 | 1 | - N.D. | N.D.
- | N.D. | | N.D.
- | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | - N.D. |
N.D. | -
N.D. | N.D. |
N.D. | - N.D. | 0.010 | 0.4 | 0.1 | -
N.D. | -
N.D. | -
N.D. | -
N.D. |
N.D. | - N.D. | - I | -
N.D. | - T | -
N.D. | - | | | N.D. | | 12-4 (深度 2 m)
12-4 (深度 2.56 m) | 8/20 | 3 | N.D. | N.D. | N.D. | - | - | | | - | - 1 | | - | - | | | - | - | | - | | - 1 | - | | - | | | | | 12-4 (深度 2.56 m) | 8/20 | 3 | N.D. | N.D. | N.D. | N.D. | | N.D.
- | N.D.
- | N.D. | N.D. | 0.003 | 0.4 | 0.1 | N.D.
- | N.D.
- | N.D. 16 | N.D. | N.D. | N.D. | | 12-5 (深度0-0.05 m)
12-5 (深度0-0.5 m) | | | N.D. | N.D. | N.D. | N.D. | | | | N.D. | N.D. | N.D. | N.D. | - | - | | - | - | | - | - 1 | - | | - 1 | - | - | | _ | | - | _ | - | - | | | | | 12-5 (深度 0.5 m) | 8/20 | 3 | N.D. | N.D. | | | | | N.D. | N.D. | -
N.D. | N.D. 0.005 | 0.2 | 0.1 | N.D. 19 | N.D. | N.D. | N.D. | | | 8/20
8/20 | | -
N.D. | N.D. | - N.D. | - N.D. | –
N.D. | - | -
N.D. | | - | _ | - | | N.D. | | | | | 0.002 | 0.2 | N.D. | N.D. | N.D. | | | N.D. | N.D. | N.D. | | | N.D. | | N.D. | | N.D. | | | -, -, -, | ~ 11 | | | 11100 | | 11.12. | ハ・レ・ | 11.17. | IV.D. | パル・ | N.D. | N.D. | - i | - 1 | - 1 | - | - | - | - | - | - (| - | - 1 | - ! | - 1 | - H | - 1 | - 1 | - 1 | - 1 | | | - | - 1 | _ 1 | 発行日: 平 発行証明書書号: S 株式会社 日立プラントサー 本社: 〒170-6034 東京都 分析技術センタ 住所: 〒271-0064 千葉県4 計量証明事業登録番号 千来県和争な 8,5005 計量管理者 環境計量士 | 件名: 豊洲新市場予 | 定地にお | さける盛 | 土の土壌 | 調査委託 | (その) | 1) | - | AT JEE ? | 雪理者 瑪 | 現計畫工 | | | | | |--|--------------------|---------------------------------|----------------|-------------|--------------|-------------------|----------------------|---------------|---------------|----------------------|---------------|---------------------------------------|---------------
----------------|----------------|-----------------|---------------|--------------|------------------|---------------|----------------|----------------|----------------|----------------|--------------|--------------------|--------------|----------------|----------------|--------------|--------------|----------------|---------------|---------------|-----------------|--------------| | | | | F# POLICE | | | | | | | · · · · | | · · · · · · · · · · · · · · · · · · · | т | 土 | 壌 溶 | 出量 | , | | | | | | | | | | - | | | | 土 | 坡 含 | 1 | | | | | 試料点名 | | 74-4X LI 1 | カー 炭乳 | | | | ーン 1,3ーシグ
レン ロフロヘ | | プレーティング アトラクロ | 1,1,1-トワ
/ クロロエタン | | トリクロロエチレン | ベンゼン | かりか及び
その化合物 | | シアン化合物 | 水銀及び
その化合物 | セレン及び | ア 鉛及び
物 その化合物 | 砒素及び
その化合物 | なっ素及び
をの化合物 | ほう素及び
その化合物 | ブ シマジン | チオベンカルブ | チウラム | ポリ塩化
ピフェニル | | がジル及び
その化合物 | | シアン化合物 | 水銀及びその化合業 | セレン及び | 鉛及び
その化会物 | 従来及び
その化会物 | ふっ素及び
その化合物・ | ほう素及び | | P 10 F (%E) | | 0./00 | (mg/ | | L) (mg/ | 'L) (mg/l | L) (mg/L |) (mg/L) | 1 | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/kg) | (mg/kg) | (mg/kg) | | (mg/kg) | l | 1 | 1 | (mg/kg) | | F 12 - 5 (深度
F 12 - 5 (深度 | $\frac{2}{2}$ m) | | 1 -
3 N.I | |). N.I |). N.D |). N.D. | -
N.D. | N.D. | N.D. 1 | N.D. | | 441. | .47 m) | 8/20 | 1 - | _ | | | _ | _ | | - N.D. | 0.3 | N.D. 16 | -
N.D. | N.D. | N.D. | | F 12 - 5 (深度 2.
F 12 - 6 (深度0- 0. | .47 m)
05 m) | | 3 N.I
1 N.I | | | | | | N.D. | N.D. | N.D. | N.D. | N.D. | - | | - | |] | - | - | | - | - | ! - | | | _ | - | · - | - | - | - | | - | - | | | F 12 - 6 (深度0- 0 | .5 m) | 8/20 | 1 - | - | | _ | | - N.D. | | - N.D. | - 18.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.2 | N.D. 16 | N.D. | -
 N.D. | N.D. | | F 12 - 6 (深度 0
F 12 - 6 (深度 | | 8/20
8/20 | 1 N.C
1 N.C | | | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | - | - | - | - | | - | - | - | | | - | - | - | |] = | - | | _ | - | | - | - | | | F 12 - 6 (深度 | 2 m) | 8/20 | 1 N.E | . N.D | . N.E |). N.D | N.D. | N.D. | N.D.
N.D. | N.D. N.D.
N.D. | N.D. | 0.003 | 0.2 | N.D. N.D.
N.D. | N.D. | N.D. | N.D.
17 | N.D. | | N.D. | | F 12 - 6 (深度 2.
F 13 - 1 (深度0- 0.0 | 55 m) | | 1 N.E | | | | | N.D. | | N.D. 0.003 | | N.D. 18 | N.D. | | N.D. | | F 13 - 1 (深度0- 0. | .5 m) | 8/22 | 1 – | _ | | | - N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D.
- | N.D. 0.3 | N.D. -
N.D. | -
N.D. | 20 | N.D. | -
N.D. | N.D. | | F 13 ~ 1 (深度 0.
F 13 ~ 1 (深度 1 | .5 m) (
I m) (| | N.D | | | | | N.D. | | N.D. | N.D. | N.D. | N.D. | - | - | _ | • - | | =_ | - | - | | ļ <u>-</u> | | - | - | | - | - | | - | - | | | - | | | F 13 - 1 (深度 2 | 2 m) i | | N.D | | | | | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | 0.005
N.D. | 0.5 | 0.1 | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 16
17 | N.D. | | N.D. | | F 13 - 1 (深度 3.5 F 13 - 1 (深度 3.5 | | 3/22 | l N.D | | | | | | N.D. 0.002 | 0.4 | N.D. 16 | N.D. | N.D. | N.D. | | F 13 - 2 (深度0- 0.0 |)5 m) 8 | 3/22 | l N.D | | | | | N.D. N.D.
- | N.D. | N.D. | N.D.
- | 0.002 | -0.5 | 0.1 | N.D. <u>N.D.</u> | N.D. | N.D. | N.D. | | F 13 - 2 (深度0- 0.
F 13 - 2 (深度 0. | 5 m) 8 | |
. N.D | –
. N.D. | N D | - N.D. | | _ | - | - | - | - | | N.D. | N.D. | N.D. | N:D. | N.D. | N.D. | N.D. | 0.3 | 0.1 | N.D. 17 | N.D. | | N.D. | | F 13 - 2 (深度 1 | m) 8 | 3/22 1 | N.D | N.D. | N.D | | | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | N.D. | 0.004 | 0.3 | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | -
N.D. | -
N.D. |
N.D. | N.D. | N.D. | | N.D. | N.D. | -
N.D. | | F 13 - 2 (深度 2
F 13 - 2 (深度 3 | m) 8 | | N.D | | | | N.D. 0.003 | 0.5 | N.D. | F 13 - 2 (深度 3.4 | 14 m) 8 | 3/22 1 | N.D | N.D. | | | | N.D. 0.006 | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D.
17 | N.D. | | N.D. | | F 13 - 3 (深度0- 0.0
F 13 - 3 (深度0- 0.1 | 5 m) 8 | /22 1 | N.D | | | | | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | - | | - | 1 | - | - | - | - | - | | - | _ | - | | - N.D. | - N.D. | - N.D. | - IV.D. | - N.D. | - | | N.D. | N.D. | | | | $\frac{1}{22}$ 1 | N.D. | -
N.D. | N.D | . N.D. | N.D. | N.D. | N.D. | –
N.D. | -
N.D. | -
N.D. | N.D. | N.D.
- | N.D. | N.D. | <u>N.D.</u> | N.D. | N.D. | N.D. | 0.3 | 0.1 | N.D. <u>N.D.</u> | N.D. | N.D. | | N.D. | N.D. | N.D. | | F 13 - 3 (深度 1
F 13 - 3 (深度 2 | | /22 1 | N.D. | N.D. | N.D | . N.D. | 0.003 | 0.3 | · N.D. | 17 | N.D. | | N.D. | | F 13 - 3 (深度 3 | | $\frac{/22}{/22}$ 1 | N.D. | N.D. | | | | N.D. | N.D. | N.D.
N.D. | N.D.
N.D. | N.D. | N.D. | N.D. | N.D. | N.D.
N.D. | N.D. | N.D. | 0.002
N.D. | 0.002 | 0.3 | N.D. | N.D. | N.D. | N.D.
N.D. | N.D.
N.D. | N.D. | N.D. | | | | /22 1 | N.D. | | N.D. 0.005 | 0.3 | 0.1 | N.D. 15
24 | N.D.
N.D. | | N.D. | | F 13 - 4 (深度0- 0.0)
F 13 - 4 (深度0- 0.5) | | /20 4
/20 1 | N.D. | N.D. | N.D. | . N.D. |
N.D. | N.D. | N.D. | -
N.D. | N.D. | 0.007 | 0.2 | 0.1 | N.D. | –
N.D. | N.D. | - N.D. | - N.D | | N.D. | - N.D. | -
N.D. | -
N.D. | - | - | - | - | | | | | N.D. | N.D. | N.D. | | N.D. - N.D. | - | N.D. | - N.D. | - N.D. | - N.D. | <u>0.007</u> | - | | IV.D. | - N.D. | - N.D. | N.D. | N.D.
- | N.D. | N.D. | N.D. | N.D. | N.D.
- | <u>24</u>
 | N.D. | N.D. | N.D. | | F 13 - 4 (深度 1
F 13 - 4 (深度 1 | | $\frac{/20}{/20} = \frac{1}{4}$ | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
 N.D. | N.D. | -
N.D. | N.D. 0.004 | 0.3 | 0.1 | N.D. 30 | N.D. | | N.D. | | | | /20 1 | | | _ | - | | | - | - | - | - | | N.D. | N.D. | N.D. | N.D. | N.D. | | 0.002 | 0.4 | N.D.
N.D. | 16 | -
N.D. | N.D. | N.D. | | F 13 - 4 (深度 1.9 F 13 - 5 (深度0- 0.05 | | $\frac{/20}{/20}$ 4 | | N.D. | N.D. | | N.D. | | | | - | | - | 1 1 | - | | - | - | - | - | | | - | | | _ | | - | - | | F 13 - 5 (深度0- 0.5 | | | _ | - | _ | | - | | - | - | - | - | - | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.003 | 0.2 | 0.1 | N.D. -
N.D. | -
18 | -
N.D. | -
N.D. | N.D. | | F 13 ~ 5 (深度 0.5 F 13 ~ 5 (深度 1 | m) 8, | $\frac{/20}{/20} = \frac{4}{1}$ | N.D. | N.D. | N.D. | N.D.
- | N.D. -
N.D. | N.D. | N.D. | N.D. | -
N.D. | -
N.D. | 0.007 | 0.4 | _
 | -
N.D. | -
N.D. | -
N.D. | -
N.D. |
N.D. | | - | - N.D. | - N.D. | - | - | | - | | | F 13 - 5 (茶度 1 | | | N.D. - | - N.D. | - | - N.D. | N.D. | | 1 | - | 0.1 | - N.D. | - N.D. | N.D. | - N.D. | N.D. | N.D.
- | N.D.
- | N.D. | N.D.
- | N.D. | 19
- | N.D. | N.D. | N.D.
- | | | m) 8,
m) 8, | | | N.D. | N.D. | N.D. | N.D. | N.D. | - N.D. | -
N.D. | -
N.D. | -
N.D. | N.D. 0.005 | 0.3 | N.D. 16 | | N.D. | N.D. | | F 13 - 5 (深度 2.34 | 4 m) 8, | /20 I | | | | - | | - | | - | - | - | -
- | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | 0.004 | 0.3 | 0.1 | N.D. 23 |
N.D. | N.D. | -
N.D. | | F 13 - 5 (深度 2.34
F 13 - 6 (深度0- 0.05 | 4 m) 8,
5 m) 8, | 20 4 | N.D. | N.D. | | | N.D. | | N.D. | N.D. | | N.D. | N.D. | = 1 | | | | 1 1 | | 1 | | | - | | - | - | | | | | - | | | - | | - | | F 13 ~ 6 (深度0- 0.5 | m) 8/ | 20 1 | _ | - | | | - | | - | | - | | N.D. 0.007 | 0.3 | 0.1 | N.D. | N.D. | N.D. | N.D. | N.D. | N.D. | -
N.D. | N.D. | N.D. | N.D. | 23 | N.D. | N.D. | N.D. | | | m) 8/
m) 8/ | | N.D.
- | N.D. -
N.D. | -
N.D. | -
N.D. | -
N.D. | - N.D | - | | 1 | | - N.D. | - | _ | | - | _ | - | - | - | | - | | - | - | | F 13 - 6 (深度 1 | m) 8/ | 20 4 | | N.D. - | 11.D. | - ,
IV.D. | N.D.
- | N.D. | | 0.3 | 0.1
- | N.D.
- | N.D.
- | N.D. | N.D.
- | N.D.
- | N.D.
- | - | N.D.
- | | N.D. | 23 | N.D. | N.D | N.D.
- | | F 13 - 6 (深度 2 | m) 8/
m) 8/ | 20 4 | N.D. | N.D. | N.D. | N.D | N.D. | N.D. | -
N.D. | N.D. | –
N.D. | -
N.D. | N.D. 0.003 | 0.2 | N.D. | N.D. | N.D. | N.D. | N.D. | | F 13 - 6 (深度 2.38 | 3 m) 8/ | 20 1 | | - | <u> </u> | - | - | - | - | - | - | - | -
- | N.D. | N.D. | N.D. | N.D. | √N.D. | N.D. | 0.008 | 0.3 | 0.1 | N.D. | N.D. | N.D. | 22 | N.D. | N.D. | N.D. | | F 13 - 6 (深度 2.38
定量下限値 | | 20 4 | 0.0002 | | | | N.D.
0.0002 | N.D.
0.002 | N.D.
0.001 | | | | N.D. | - 0.002 | | - | - 0005 | - 000 | | | | | - | - | | | - | - | | | | | - | - | | | | 指定基準値 | | | 0.002 | 0.004 | 0.02 | 0.04 | 0.002 | 0.002 | 0.001 | | 0.0006 | 0.003 | 0.001 | 0.002 | 0.01
0.05 | 0.I
映出されないこと | 0.0005 | 0.002 | 0.002 | 0.002 | 0.1 | 0.1 | 0.0003 | 0.002 | 0.0006 | 0.0005
機出されないこと | 0.1 | 15
150 | 25
250 | 5
50 | 1.5 | 15
150 | 15
150 | 15
150 | | 4000 | | ㈱日立プラントサ- | ービス | | JIS K 昭和46年 | JIS K | JIS K | | 昭和46年 | JIS K | 昭和46年 | 昭和46年 | 昭和46年 | 昭和46年 | 昭和49年 | JIS K | JIS K | | 昭和46年 | JIS K | JIS K | JIS K | | JIS K | | 計量方法 その | の 1 | 1 | 0125
5.2 0125 -
5.2 | 0102
55.4 | 0102
65.2.1 | 0102
38.3 | 聚告59号
付表1 | 0102
67.4 | 0102
54.4 | 0102
61.4 | 環告59号
付表6 | 0102
47.3 | 聚告59号
付表5第1 | 環告59号
付表5第1 | 環告59号
付表4 | 環告59号
付表3 | 環告64号
付表1 | 0102
55.3 | 0102
65.2.1 | | 環告59号
付表1 | 0102
67.2 | 0102
54.3 | 0102
61.2 | 0102 | 0102
47.3 | | 粥日立プラントサ- | ービス | | JIS K K
0125 | JIS K | JIS K | JIS K | JIS K | | 昭和46年 | JIS K | JIS K | | 昭和46年 | JIS K | 昭和46年 | 昭和46年 | 昭和46年 | 昭和46年 | 122和49年 | JIS K | JIS K | JIS K | 昭和46年 | JIS K | JIS K | JIS K | | JIS K | | 計量方法であ | 2 | Z | 0125
5.1 0102
55.4 | 0102
65,2,1 | 0102
38.3 | 環告59号
付表1 | 0102
67.4 | 0102
54.4 | 0102
61.4 | 環告59号
付表6 | 0102
47.3 | 環告59号
付表5第1 | 環告59号 | 森告59号 | 環告59号
付表3 | 環告64号
付表1 | 0102
55.3 | 0102
65,2,1 | | 聚告59号
付表1 | 0102
67.2 | 0102
54.3 | 0102
61.2 | 0102 | 0102
47.3 | | ㈱湘南分析センタ | \$ <u></u> | | JIS K | - | | 計量方法 | | 3 | 0125
5,2 | 0125
5.2 | | | | | | | | | | | | | | · | | | | — i | | | -
| | | 習和産業網 | | | JIS K | | | | | | | | | | | = | | 昭和49年 | \dashv | -+ | | | - | | \rightarrow | | - | | 計量方法
 | | 4 | 0125
5.2 | | | | | | • | | | | | | | 環告64号
付表1 | | | | | | | | | | <u>計量結果一覧表</u>